Skip to content

Commit

Permalink
Implement lowering of aten.cosh op. (#2635)
Browse files Browse the repository at this point in the history
  • Loading branch information
godot73 authored Dec 15, 2023
1 parent eb9249e commit 55e9401
Show file tree
Hide file tree
Showing 6 changed files with 116 additions and 3 deletions.
45 changes: 45 additions & 0 deletions include/torch-mlir/Dialect/Torch/IR/GeneratedTorchOps.td
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,51 @@ def Torch_AtenTanh_Op : Torch_Op<"aten.tanh_", [
}];
}

def Torch_AtenCoshOp : Torch_Op<"aten.cosh", [
AllowsTypeRefinement,
HasValueSemantics,
ReadOnly
]> {
let summary = "Generated op for `aten::cosh : (Tensor) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$self
);
let results = (outs
AnyTorchTensorType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult AtenCoshOp::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 1, 1);
}
void AtenCoshOp::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 1, 1);
}
}];
}

def Torch_AtenCosh_Op : Torch_Op<"aten.cosh_", [
IsTrailingUnderscoreInplaceVariant,
AllowsTypeRefinement
]> {
let summary = "Generated op for `aten::cosh_ : (Tensor) -> (Tensor)`";
let arguments = (ins
Torch_NonValueTensorType:$self
);
let results = (outs
Torch_NonValueTensorType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult AtenCosh_Op::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 1, 1);
}
void AtenCosh_Op::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 1, 1);
}
}];
}

def Torch_AtenHardtanhOp : Torch_Op<"aten.hardtanh", [
AllowsTypeRefinement,
HasValueSemantics,
Expand Down
8 changes: 6 additions & 2 deletions lib/Conversion/TorchToLinalg/Uncategorized.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -220,6 +220,10 @@ static Value createLinalgPayloadCalculationForElementwiseOp(
return createCalculationForMathOpWithDtypeConversion<math::TanhOp>(
b, converter, payloadArgs[0], op);
}
if (isa<AtenCoshOp>(op)) {
return createCalculationForMathOpWithDtypeConversion<math::CoshOp>(
b, converter, payloadArgs[0], op);
}
if (isa<AtenExpOp>(op)) {
return createCalculationForMathOpWithDtypeConversion<math::ExpOp>(
b, converter, payloadArgs[0], op);
Expand Down Expand Up @@ -1311,7 +1315,7 @@ class ConvertElementwiseOp : public ConversionPattern {
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
if (!isa<AtenTanhOp, AtenReluOp, AtenPreluOp, AtenGeluOp,
if (!isa<AtenTanhOp, AtenCoshOp, AtenReluOp, AtenPreluOp, AtenGeluOp,
AtenGeluBackwardOp, AtenAddTensorOp, AtenMulTensorOp,
AtenDivTensorOp, AtenDivTensorModeOp, AtenSubTensorOp, AtenAtan2Op,
AtenLerpTensorOp, AtenSigmoidOp, AtenExpOp, AtenExpm1Op,
Expand Down Expand Up @@ -1964,7 +1968,7 @@ void mlir::torch::torch_to_linalg::populateUncategorizedPatternsAndLegality(
ConversionTarget &target) {
MLIRContext *context = patterns.getContext();
target.addIllegalOp<
AtenTanhOp, AtenReluOp, AtenGeluOp, AtenGeluBackwardOp, AtenAddTensorOp,
AtenTanhOp, AtenCoshOp, AtenReluOp, AtenGeluOp, AtenGeluBackwardOp, AtenAddTensorOp,
AtenMulTensorOp, AtenDivTensorOp, AtenDivTensorModeOp, AtenSubTensorOp,
AtenLerpTensorOp, AtenSigmoidOp, AtenMinimumOp, AtenAtan2Op,
AtenMaximumOp, AtenToDtypeOp, AtenClampOp, AtenClampTensorOp,
Expand Down
11 changes: 10 additions & 1 deletion lib/Dialect/Torch/Transforms/AbstractInterpLibrary.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -6242,6 +6242,10 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n"
" }\n"
" func.func @\"__torch_mlir_shape_fn.aten.cosh\"(%arg0: !torch.list<int>) -> !torch.list<int> {\n"
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n"
" }\n"
" func.func @\"__torch_mlir_shape_fn.aten.tanh\"(%arg0: !torch.list<int>) -> !torch.list<int> {\n"
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n"
Expand Down Expand Up @@ -8523,7 +8527,7 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
" return %0#1 : !torch.int\n"
" }\n"
" func.func @\"__torch_mlir_dtype_fn.aten.tanh\"(%arg0: !torch.tuple<int, int>) -> !torch.int {\n"
" func.func @\"__torch_mlir_dtype_fn.aten.cosh\"(%arg0: !torch.tuple<int, int>) -> !torch.int {\n"
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
" %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n"
" return %1 : !torch.int\n"
Expand Down Expand Up @@ -8565,6 +8569,11 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
" %0 = torch.prim.ListConstruct %int5, %int15, %int6, %int7 : (!torch.int, !torch.int, !torch.int, !torch.int) -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n"
" }\n"
" func.func @\"__torch_mlir_dtype_fn.aten.tanh\"(%arg0: !torch.tuple<int, int>) -> !torch.int {\n"
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
" %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n"
" return %1 : !torch.int\n"
" }\n"
" func.func @\"__torch_mlir_dtype_fn.aten.exp\"(%arg0: !torch.tuple<int, int>) -> !torch.int {\n"
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
" %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n"
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,9 @@ def aten〇tril〡shape(self: List[int], diagonal: int = 0) -> List[int]:
def aten〇atan〡shape(self: List[int]) -> List[int]:
return upstream_shape_functions.unary(self)

def aten〇cosh〡shape(self: List[int]) -> List[int]:
return upstream_shape_functions.unary(self)

def aten〇tanh〡shape(self: List[int]) -> List[int]:
return upstream_shape_functions.unary(self)

Expand Down Expand Up @@ -1538,6 +1541,13 @@ def prims〇split_dim〡dtype(a_rank_dtype: Tuple[int, int], dim: int, outer_len
_, a_dtype = a_rank_dtype
return a_dtype


@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1))
def aten〇cosh〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
self_rank, self_dtype = self_rank_dtype
return _get_dtype_of_floating_point_op(self_dtype)


@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1))
def aten〇tanh〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
self_rank, self_dtype = self_rank_dtype
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -256,6 +256,7 @@ def emit_with_mutating_variants(key, **kwargs):
# Elementwise tensor compute ops
for key in [
"aten::tanh : (Tensor) -> (Tensor)",
"aten::cosh : (Tensor) -> (Tensor)",
"aten::hardtanh : (Tensor, Scalar, Scalar) -> (Tensor)",
"aten::elu : (Tensor, Scalar, Scalar, Scalar) -> (Tensor)",
"aten::relu : (Tensor) -> (Tensor)",
Expand Down
44 changes: 44 additions & 0 deletions projects/pt1/python/torch_mlir_e2e_test/test_suite/elementwise.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,50 @@ def ElementwiseUnaryIntModule_basic(module, tu: TestUtils):
# ==============================================================================


class ElementwiseCoshModule(torch.nn.Module):

def __init__(self):
super().__init__()

@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, a):
return torch.cosh(a)


@register_test_case(module_factory=lambda: ElementwiseCoshModule())
def ElementwiseCoshModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))


# ==============================================================================


class ElementwiseCoshIntModule(torch.nn.Module):

def __init__(self):
super().__init__()

@export
@annotate_args([
None,
([-1, -1], torch.int32, True),
])
def forward(self, a):
return torch.cosh(a)


@register_test_case(module_factory=lambda: ElementwiseCoshIntModule())
def ElementwiseCoshIntModule_basic(module, tu: TestUtils):
module.forward(tu.randint(3, 4, low=1, high=10).to(torch.int32))


# ==============================================================================


class ElementwiseBinaryModule(torch.nn.Module):

def __init__(self):
Expand Down

0 comments on commit 55e9401

Please sign in to comment.