forked from paldepind/maxima-calculus2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.mac
200 lines (182 loc) · 5.48 KB
/
main.mac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
printHeader(s) := print("-----", s, "-----");
printLine() := print("-----------------------------");
vecLen(v) := (
sqrt(v . v)
);
unitVecRad(a):= (
x: cos(a),
y: sin(a),
fac: factor(x,y),
printHeader("Beregner enhedsvektor fra radianer"),
print("Faktoriseret: ", fac,[x/fac,y/fac],""),
print("Foruden:", [x,y])
);
normVec(v) := (
v / vecLen(v)
);
gradient(f, p, vec) := (
printHeader("Viser information for"),
print("f(x,y) = ", f),
fx: diff(f, x),
fxx: diff(fx, x),
fxy: diff(fx, y),
fy: diff(f, y),
fyx: diff(fy, x),
fyy: diff(fy, y),
grad: [fx, fy],
gradP: [ev(fx, x = p[1], y = p[2]), ev(fy, x = p[1], y = p[2])],
maxDir: gradP / vecLen(gradP),
printHeader("Afledte funktioner"),
print("f_x(x,y) =", fx),
print("f_xx(x,y) =", fxx),
print("f_xy(x,y) =", fxy),
print("f_y(x,y) =", fy),
print("f_yy(x,y) =", fyy),
print("f_yx(x,y) =", fyx),
printHeader("Gradienten og retningsafledte"),
print("Gradienten:", grad),
print("Gradienten i punktet", p, "er", gradP),
print("Retningsafledede i punktet", p, ":", vec. gradP),
print("Den vektor, der giver den stoorste retningsafledede:", maxDir),
print("Den stoorste regningsafledede i", p, ":", maxDir . gradP)
);
gradientAngle(f, p, theta) := (
vec: [cos(theta), sin(theta)],
print("retningsvektoren for vinklen:", vec),
gradient(f, p, vec)
);
projection(v, u) := (
(u . v) / (u . u)
);
twoVectors(v, u) := (
dotProduct: v . u,
lenV: vecLen(v),
lenU: vecLen(u),
dist: vecLen(v - u),
projLen: vecLen(u - projection(u, v) * v),
print("|v| = ", lenV),
print("|u| = ", lenU),
print("afstand mellem v og u: ", dist),
print("skalar produkt: v . u = ", dotProduct),
print("v projekteret paa u: ", projection(v, u), " * u"),
print("u projekteret paa v: ", projection(u, v), " * v"),
print("korteste afstand fra u til v: ", projLen)
);
threeVectors(u1, u2, x) := (
lenU1: vecLen(u1),
lenU2: vecLen(u2),
nU1: normVec(u1),
nU2: normVec(u2),
lenX: vecLen(x),
printHeader("Laengder"),
print("|u1| = ", lenU1),
print("|u2| = ", lenU2),
print("|x| = ", lenX),
print("skalar produkt: x . u1 = ", x . u1),
print("skalar produkt: x . u2 = ", x . u2),
print("afstand fra x til u1", vecLen(x - u1)),
print("afstand fra x til u2", vecLen(x - u2)),
print("x projekteret paa u1: ", projection(x, u1), " * u1"),
print("x projekteret paa u2: ", projection(x, u2), " * u2"),
if u1 . u2 = 0
then print("x projekteret paa rummet udspaendt af u1 og u2:", (x . nU1) * nU1 + (x . nU2) * nU2)
else print("u1 og u2 er ikke ortogonale")
);
exprD(fxx, fyy, fxy) := (
fxx * fyy - fxy^2
);
secDerTest(d, fxxab) := (
if d > 0 and fxxab > 0 then "lokalt minimum"
else if d > 0 and fxxab < 0 then "lokalt maksimum"
else if d < 0 then "saddelpunkt"
else "n/a"
);
criticalPoints(f) := (
printHeader("Viser information for"),
print("f(x,y) = ", f),
fx: diff(f, x),
fxx: diff(fx, x),
fxy: diff(fx, y),
fy: diff(f, y),
fyx: diff(fy, x),
fyy: diff(fy, y),
critPs: solve([fx, fy], [x, y]),
d: exprD(fxx, fyy, fxy),
printHeader("Afledte funktioner"),
print("f_x(x,y) =", fx),
print("f_xx(x,y) =", fxx),
print("f_xy(x,y) =", fxy),
print("f_y(x,y) =", fy),
print("f_yy(x,y) =", fyy),
print("f_yx(x,y) =", fyx),
print("Udtryk for D:", d),
printHeader("Kritiske punkter"),
print("antal kritiske punkter:", length(critPs)),
for critP in critPs do (
a: critP[1],
b: critP[2],
curD: ev(d, a, b),
print("Kritisk punkt:", critP),
print("hvis vaerdi er:", ev(f, a, b)),
print("D:", curD),
print("punktet er et", secDerTest(curD, ev(fxx, critP[1], critP[2])))
)
);
maclaurin(f, n, y) := (
printHeader("Viser information for"),
series: taylor(f, x, 0, 18),
print("f(x) = ", f),
print("f^(", n, ")(0) =", coeff(series, x, n)*n!),
printHeader("De afledte er"),
for i: 0 thru 10 do (
ff: diff(f, x, i),
print("f^(", i, ") =", ff)
),
printHeader("Maclaurin raekken for f(x) er"),
print(series),
printHeader("Maclaurin raekken for f'(x) er"),
print(taylor(diff(f, x), x, 0, 18)),
intF: integrate(f, x),
constant: y - ev(intF, x=0),
printHeader("Maclaurin raekken for F(x) er"),
print(taylor(intF + constant, x, 0, 18))
);
calcMatrix(a) := (
printHeader("Viser information for"),
print(a),
printHeader("Det karakteristisk polynomie"),
ch: charpoly(a, l),
/* print char poly in several forms */
print(expand(ch), "=", factor(ch), "=", ch),
printHeader("Egenvaerdier og egenvektorer"),
vecs: eigenvectors(a),
eigvals: vecs[1][1],
print("antal egenvaerdier:", length(eigvals)),
for i: 1 thru length(eigvals) do (
print("Egenvaerdi"),
print(vecs[1][1][i]),
print("Egenvektorer"),
print(vecs[2][i]),
print("Egenrummet"),
print(nullspace(a-vecs[1][1][i]*identfor(a))),
printLine())
);
areaVol(lx, gx, ly, gy, lz, gz) := (
areaEq: 'integrate(gy - ly, x, lx, gx),
area: integrate(gy - ly, x, lx, gx),
volumeEq: 'integrate('integrate(gz - lz, y, ly, gy), x, lx, gx),
volume: integrate(integrate(gz - lz, y, ly, gy), x, lx, gx),
printHeader("Areal"),
print("D1 = { (x,y) |", lx, "<= x <=", gx, ",", ly, "<= y <=", gy, "}"),
print(A(D1) = areaEq, "=", area),
plot2d([ly, gy], [x, lx, gx]),
printHeader("Volume"),
print("D2 = { (x,y,z) |", lx, "<= x <=", gx, ",", ly, "<= y <=", gy, ",", lz, "<= z <=", gz, "}"),
print(V(D2) = volumeEq, "=", volume)
);
normalEquation(A,y):=(
t: ctranspose(A),
eq: invert(t . A) . (t . y),
print(t . A , x = t . y),
x=eq
);