Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: lemmas about List.erase(|P|Idx) #5152

Merged
merged 1 commit into from
Aug 25, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
68 changes: 68 additions & 0 deletions src/Init/Data/List/Erase.lean
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,25 @@ theorem eraseP_of_forall_not {l : List α} (h : ∀ a, a ∈ l → ¬p a) : l.er
| nil => rfl
| cons _ _ ih => simp [h _ (.head ..), ih (forall_mem_cons.1 h).2]

@[simp] theorem eraseP_eq_nil (xs : List α) (p : α → Bool) : xs.eraseP p = [] ↔ xs = [] ∨ ∃ x, p x ∧ xs = [x] := by
induction xs with
| nil => simp
| cons x xs ih =>
simp only [eraseP_cons, cond_eq_if]
split <;> rename_i h
· simp only [false_or]
constructor
· rintro rfl
simpa
· rintro ⟨_, _, rfl, rfl⟩
rfl
· simp only [cons.injEq, false_or, false_iff, not_exists, not_and]
rintro x h' rfl
simp_all

theorem eraseP_ne_nil (xs : List α) (p : α → Bool) : xs.eraseP p ≠ [] ↔ xs ≠ [] ∧ ∀ x, p x → xs ≠ [x] := by
simp

theorem exists_of_eraseP : ∀ {l : List α} {a} (al : a ∈ l) (pa : p a),
∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂
| b :: l, a, al, pa =>
Expand Down Expand Up @@ -159,6 +178,14 @@ theorem eraseP_append (l₁ l₂ : List α) :
rw [eraseP_append_right _]
simp_all

theorem eraseP_replicate (n : Nat) (a : α) (p : α → Bool) :
(replicate n a).eraseP p = if p a then replicate (n - 1) a else replicate n a := by
induction n with
| zero => simp
| succ n ih =>
simp only [replicate_succ, eraseP_cons]
split <;> simp [*]

protected theorem IsPrefix.eraseP (h : l₁ <+: l₂) : l₁.eraseP p <+: l₂.eraseP p := by
rw [IsPrefix] at h
obtain ⟨t, rfl⟩ := h
Expand Down Expand Up @@ -264,6 +291,16 @@ theorem erase_eq_eraseP [LawfulBEq α] (a : α) : ∀ l : List α, l.erase a =
| b :: l => by
if h : a = b then simp [h] else simp [h, Ne.symm h, erase_eq_eraseP a l]

@[simp] theorem erase_eq_nil [LawfulBEq α] (xs : List α) (a : α) :
xs.erase a = [] ↔ xs = [] ∨ xs = [a] := by
rw [erase_eq_eraseP]
simp

theorem erase_ne_nil [LawfulBEq α] (xs : List α) (a : α) :
xs.erase a ≠ [] ↔ xs ≠ [] ∧ xs ≠ [a] := by
rw [erase_eq_eraseP]
simp

theorem exists_erase_eq [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :
∃ l₁ l₂, a ∉ l₁ ∧ l = l₁ ++ a :: l₂ ∧ l.erase a = l₁ ++ l₂ := by
let ⟨_, l₁, l₂, h₁, e, h₂, h₃⟩ := exists_of_eraseP h (beq_self_eq_true _)
Expand Down Expand Up @@ -333,6 +370,11 @@ theorem erase_append [LawfulBEq α] {a : α} {l₁ l₂ : List α} :
(l₁ ++ l₂).erase a = if a ∈ l₁ then l₁.erase a ++ l₂ else l₁ ++ l₂.erase a := by
simp [erase_eq_eraseP, eraseP_append]

theorem erase_replicate [LawfulBEq α] (n : Nat) (a b : α) :
(replicate n a).erase b = if b == a then replicate (n - 1) a else replicate n a := by
rw [erase_eq_eraseP]
simp [eraseP_replicate]

theorem erase_comm [LawfulBEq α] (a b : α) (l : List α) :
(l.erase a).erase b = (l.erase b).erase a := by
if ab : a == b then rw [eq_of_beq ab] else ?_
Expand Down Expand Up @@ -420,11 +462,26 @@ theorem eraseIdx_eq_take_drop_succ :
| a::l, 0 => by simp
| a::l, i + 1 => by simp [eraseIdx_eq_take_drop_succ l i]

@[simp] theorem eraseIdx_eq_nil {l : List α} {i : Nat} : eraseIdx l i = [] ↔ l = [] ∨ (length l = 1 ∧ i = 0) := by
match l, i with
| [], _
| a::l, 0
| a::l, i + 1 => simp [Nat.succ_inj']

theorem eraseIdx_ne_nil {l : List α} {i : Nat} : eraseIdx l i ≠ [] ↔ 2 ≤ l.length ∨ (l.length = 1 ∧ i ≠ 0) := by
match l with
| []
| [a]
| a::b::l => simp [Nat.succ_inj']

theorem eraseIdx_sublist : ∀ (l : List α) (k : Nat), eraseIdx l k <+ l
| [], _ => by simp
| a::l, 0 => by simp
| a::l, k + 1 => by simp [eraseIdx_sublist l k]

theorem mem_of_mem_eraseIdx {l : List α} {i : Nat} {a : α} (h : a ∈ l.eraseIdx i) : a ∈ l :=
(eraseIdx_sublist _ _).mem h

theorem eraseIdx_subset (l : List α) (k : Nat) : eraseIdx l k ⊆ l := (eraseIdx_sublist l k).subset

@[simp]
Expand Down Expand Up @@ -454,6 +511,17 @@ theorem eraseIdx_append_of_length_le {l : List α} {k : Nat} (hk : length l ≤
| zero => simp_all
| succ k => simp_all [eraseIdx_cons_succ, Nat.succ_sub_succ]

theorem eraseIdx_replicate {n : Nat} {a : α} {k : Nat} :
(replicate n a).eraseIdx k = if k < n then replicate (n - 1) a else replicate n a := by
split <;> rename_i h
· rw [eq_replicate, length_eraseIdx (by simpa using h)]
simp only [length_replicate, true_and]
intro b m
replace m := mem_of_mem_eraseIdx m
simp only [mem_replicate] at m
exact m.2
· rw [eraseIdx_of_length_le (by simpa using h)]

protected theorem IsPrefix.eraseIdx {l l' : List α} (h : l <+: l') (k : Nat) :
eraseIdx l k <+: eraseIdx l' k := by
rcases h with ⟨t, rfl⟩
Expand Down
Loading