-
Notifications
You must be signed in to change notification settings - Fork 373
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
feat(AlgebraicTopology/SimplexCategory/SimplicialObject): definitions of simplicial objects by generators and relation #21748
base: master
Are you sure you want to change the base?
Conversation
PR summary e9d9f11b69
|
Files | Import difference |
---|---|
Mathlib.AlgebraicTopology.SimplexCategory.GeneratorsRelations.Basic (new file) |
830 |
Mathlib.AlgebraicTopology.SimplexCategory.GeneratorsRelations.EpiMono (new file) |
831 |
Mathlib.AlgebraicTopology.SimplexCategory.GeneratorsRelations.NormalForms (new file) |
832 |
Mathlib.AlgebraicTopology.SimplexCategory.GeneratorsRelations.Equivalence (new file) |
833 |
Mathlib.AlgebraicTopology.SimplicialObject.GeneratorsRelations (new file) |
849 |
Declarations diff
+ FreeSimplexQuiver
+ FreeSimplexQuiver.len
+ FreeSimplexQuiver.mk
+ Hom
+ P_δ
+ P_δ'
+ P_δ'_comp
+ P_δ_comp
+ P_δ_eqToHom
+ P_δ_eq_P_δ'
+ P_σ
+ P_σ'
+ P_σ'_comp
+ P_σ_comp
+ P_σ_eqToHom
+ P_σ_eq_P_σ'
+ Quiv
+ SimplexCategoryGenRel
+ SimplexCategoryGenRel.mk
+ SplitEpiσ
+ SplitMonoδ
+ eq_of_simplicialEvalδ_eq
+ eq_or_len_le_of_P_δ
+ equivSimplexCategory
+ equivSimplexCategory_functor_map_δ
+ equivSimplexCategory_functor_map_σ
+ equivSimplexCategory_functor_obj_mk
+ equivSimplexCategory_inverse_map_σ
+ equivSimplexCategory_inverse_objIsoMk
+ equivSimplexCategory_inverse_δ
+ existsUnique_P_δ_of_mono
+ existsUnique_P_σ_of_epi
+ existsUnique_toSimplexCategory_map
+ exists_P_σ_P_δ_factorisation
+ exists_normal_form_P_δ
+ exists_normal_form_P_σ
+ ext
+ homRel
+ hom_induction
+ hom_induction'
+ hom_induction_eq_top'
+ instance : toSimplexCategory.EssSurj
+ instance : toSimplexCategory.Faithful
+ instance : toSimplexCategory.Full
+ instance : toSimplexCategory.IsEquivalence := by
+ instance {n : ℕ} {i : Fin (n + 1)} : IsSplitEpi (σ i) := .mk' SplitEpiσ
+ instance {n : ℕ} {i : Fin (n + 2)} : IsSplitMono (δ i) := .mk' SplitMonoδ
+ isAdmissible
+ isAdmissibleGetElemAsFin
+ isAdmissibleHead
+ isAdmissible_cons
+ isAdmissible_ext
+ isAdmissible_head_lt
+ isAdmissible_nil
+ isAdmissible_tail
+ isSplitEpi_P_σ
+ isSplitEpi_P_σ_toSimplexCategory
+ isSplitMono_P_δ
+ isSplitMono_P_δ_toSimplexCategory
+ le_simplicialEvalδ_self
+ len
+ lt_and_eval_eq_eval_succ_of_mem_isAdmissible
+ mem_isAdmissible_iff
+ mem_isAdmissible_of_lt_and_eval_eq_eval_succ
+ mk_len
+ morphismProperty_eq_top
+ rec
+ simplicialEvalδ
+ simplicialEvalδ_eq_self_of_isAdmissible_and_lt
+ simplicialEvalδ_eq_self_of_isAdmissible_cons
+ simplicialEvalδ_monotone
+ simplicialEvalδ_of_isAdmissible
+ simplicialEvalσ
+ simplicialEvalσ_monotone
+ simplicialEvalσ_of_isAdmissible
+ simplicialEvalσ_of_lt_mem
+ simplicialInsert
+ simplicialInsert_isAdmissible
+ simplicialInsert_length
+ standardδ
+ standardδ_heq
+ standardδ_simplicialInsert
+ standardσ
+ standardσ_heq
+ standardσ_simplicialInsert
+ toSimplexCategory
+ toSimplexCategory_len
+ toSimplexCategory_map_δ
+ toSimplexCategory_map_σ
+ toSimplexCategory_obj_mk
+ δ_comp_δ
+ δ_comp_δ_nat
+ δ_comp_σ_of_gt
+ δ_comp_σ_of_le
+ δ_comp_σ_self
+ δ_comp_σ_succ
+ σ_comp_σ
+ σ_comp_σ_nat
++ mkNatIso:
++ mkNatIso_hom_app
++ mkNatIso_inv_app
++ mkNatTrans:
++ mkNatTrans_app
++ mkNatTrans_comp
++ mkNatTrans_id
++ ofGeneratorsAndRelations:
++ ofGeneratorsAndRelationsObjMkIso
++ ofGeneratorsAndRelations_map_δ
++ ofGeneratorsAndRelations_map_σ
++ δ
++ σ
You can run this locally as follows
## summary with just the declaration names:
./scripts/declarations_diff.sh <optional_commit>
## more verbose report:
./scripts/declarations_diff.sh long <optional_commit>
The doc-module for script/declarations_diff.sh
contains some details about this script.
No changes to technical debt.
You can run this locally as
./scripts/technical-debt-metrics.sh pr_summary
- The
relative
value is the weighted sum of the differences with weight given by the inverse of the current value of the statistic. - The
absolute
value is therelative
value divided by the total sum of the inverses of the current values (i.e. the weighted average of the differences).
d2a3358
to
4ac4f86
Compare
This PR/issue depends on: |
b3e9457
to
71f2347
Compare
Co-authored-by: Joël Riou <[email protected]>
71f2347
to
530752f
Compare
We leverage the equivalence between
SimplexCategory
andSimplexCategoryGenRel
to give new constructors for (co)simplicial objects, as well as constructors for natural transformations (resp. isomorphism) between those.Final PR in the series of PR formalising the equivalence between
SimplexCategory
andSimplexCategoryGenRel
.SimplexCategoryGenRel.toSimplexCategory
is an equivalence #21747