Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat(Topology/Algebra/InfiniteSum/Basic): add some lemmas on
tsum
s (#…
…10038) This is the fifth PR in a sequence that adds auxiliary lemmas from the [EulerProducts](https://github.com/MichaelStollBayreuth/EulerProducts) project to Mathlib. It adds three lemmas on `tsum`s: ```lean lemma HasSum.tsum_fiberwise {α β γ : Type*} [AddCommGroup α] [UniformSpace α] [UniformAddGroup α] [T2Space α] [RegularSpace α] [CompleteSpace α] {f : β → α} {a : α} (hf : HasSum f a) (g : β → γ) : HasSum (fun c : γ ↦ ∑' b : g ⁻¹' {c}, f b) a lemma tsum_setProd_singleton_left {α β γ : Type*} [AddCommMonoid γ] [TopologicalSpace γ] [T2Space γ] (a : α) (t : Set β) (f : α × β → γ) : (∑' x : {a} ×ˢ t, f x) = ∑' b : t, f (a, b) lemma tsum_setProd_singleton_right {α β γ : Type*} [AddCommMonoid γ] [TopologicalSpace γ] [T2Space γ] (s : Set α) (b : β) (f : α × β → γ) : (∑' x : s ×ˢ {b}, f x) = ∑' a : s, f (a, b) ``` and the necessary equivalences ```lean def prod_singleton_left {α β : Type*} (a : α) (t : Set β) : ↑({a} ×ˢ t) ≃ ↑t def prod_singleton_right {α β : Type*} (s : Set α) (b : β) : ↑(s ×ˢ {b}) ≃ ↑s ```
- Loading branch information