-
Notifications
You must be signed in to change notification settings - Fork 373
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
173 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
/- | ||
Copyright (c) 2025 Christian Merten, Yi Song, Sihan Su. All rights reserved. | ||
Released under Apache 2.0 license as described in the file LICENSE. | ||
Authors: Christian Merten, Yi Song, Sihan Su | ||
-/ | ||
import Mathlib.RingTheory.Ideal.GoingUp | ||
import Mathlib.RingTheory.Flat.FaithfullyFlat.Algebra | ||
import Mathlib.RingTheory.Flat.Localization | ||
import Mathlib.RingTheory.Spectrum.Prime.Topology | ||
|
||
/-! | ||
# Going down | ||
In this file we define a predicate `Algebra.HasGoingDown`: An `R`-algebra `S` satisfies | ||
`Algebra.HasGoingDown R S` if for every pair of prime ideals `p ≤ q` of `R` with `Q` a prime | ||
of `S` lying above `q`, there exists a prime `P ≤ Q` of `S` lying above `p`. | ||
## Main results | ||
- `Algebra.HasGoingDown.iff_generalizingMap_primeSpectrumComap`: going down is equivalent | ||
to generalizations lifting along `Spec S → Spec R`. | ||
- `Algebra.HasGoingDown.of_flat`: flat algebras satisfy going down. | ||
## TODOs | ||
- An integral extension of domains with normal base satisfies going down. | ||
-/ | ||
|
||
/-- | ||
An `R`-algebra `S` satisfies `Algebra.HasGoingDown R S` if for every pair of | ||
prime ideals `p ≤ q` of `R` with `Q` a prime of `S` lying above `q`, there exists a | ||
prime `P ≤ Q` of `S` lying above `p`. | ||
The condition only asks for `<` which is easier to prove, use | ||
`Ideal.exists_ideal_le_liesOver_of_le` for applying it. | ||
-/ | ||
@[stacks 00HV "(2)"] | ||
class Algebra.HasGoingDown (R S : Type*) [CommRing R] [CommRing S] [Algebra R S] : Prop where | ||
exists_ideal_le_liesOver_of_lt {p : Ideal R} [p.IsPrime] (Q : Ideal S) | ||
[Q.IsPrime] : | ||
p < Q.under R → ∃ P ≤ Q, P.IsPrime ∧ P.LiesOver p | ||
|
||
variable {R S : Type*} [CommRing R] [CommRing S] [Algebra R S] | ||
|
||
lemma Ideal.exists_ideal_le_liesOver_of_le [Algebra.HasGoingDown R S] | ||
{p q : Ideal R} [p.IsPrime] [q.IsPrime] (Q : Ideal S) [Q.IsPrime] [Q.LiesOver q] | ||
(hle : p ≤ q) : | ||
∃ P ≤ Q, P.IsPrime ∧ P.LiesOver p := by | ||
by_cases h : p = q | ||
· subst h | ||
use Q | ||
· have := Q.over_def q | ||
subst this | ||
exact Algebra.HasGoingDown.exists_ideal_le_liesOver_of_lt Q (lt_of_le_of_ne hle h) | ||
|
||
lemma Ideal.exists_ideal_lt_liesOver_of_lt [Algebra.HasGoingDown R S] | ||
{p q : Ideal R} [p.IsPrime] [q.IsPrime] (Q : Ideal S) [Q.IsPrime] [Q.LiesOver q] | ||
(hpq : p < q) : ∃ P < Q, P.IsPrime ∧ P.LiesOver p := by | ||
obtain ⟨P, hPQ, _, _⟩ := Q.exists_ideal_le_liesOver_of_le (p := p) (q := q) hpq.le | ||
refine ⟨P, ?_, inferInstance, inferInstance⟩ | ||
by_contra hc | ||
have : P = Q := eq_of_le_of_not_lt hPQ hc | ||
subst this | ||
simp [P.over_def p, P.over_def q] at hpq | ||
|
||
namespace Algebra.HasGoingDown | ||
|
||
variable {R S : Type*} [CommRing R] [CommRing S] [Algebra R S] | ||
|
||
/-- An `R`-algebra `S` has the going down property if and only if generalizations lift | ||
along `Spec S → Spec R`. -/ | ||
@[stacks 00HW "(1)"] | ||
lemma iff_generalizingMap_primeSpectrumComap : | ||
Algebra.HasGoingDown R S ↔ | ||
GeneralizingMap (PrimeSpectrum.comap (algebraMap R S)) := by | ||
refine ⟨?_, fun h ↦ ⟨fun {p} hp Q hQ hlt ↦ ?_⟩⟩ | ||
· intro h Q p hp | ||
rw [← PrimeSpectrum.le_iff_specializes] at hp | ||
obtain ⟨P, hle, hP, h⟩ := Q.asIdeal.exists_ideal_le_liesOver_of_le (p := p.asIdeal) | ||
(q := Q.asIdeal.under R) hp | ||
refine ⟨⟨P, hP⟩, (PrimeSpectrum.le_iff_specializes _ Q).mp hle, ?_⟩ | ||
ext : 1 | ||
exact h.over.symm | ||
· have : (⟨p, hp⟩ : PrimeSpectrum R) ⤳ (PrimeSpectrum.comap (algebraMap R S) ⟨Q, hQ⟩) := | ||
(PrimeSpectrum.le_iff_specializes _ _).mp hlt.le | ||
obtain ⟨P, hs, heq⟩ := h this | ||
refine ⟨P.asIdeal, (PrimeSpectrum.le_iff_specializes _ _).mpr hs, P.2, ⟨?_⟩⟩ | ||
simpa [PrimeSpectrum.ext_iff] using heq.symm | ||
|
||
variable (R S) in | ||
@[stacks 00HX] | ||
lemma trans (T : Type*) [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] | ||
[Algebra.HasGoingDown R S] [Algebra.HasGoingDown S T] : | ||
Algebra.HasGoingDown R T := by | ||
rw [iff_generalizingMap_primeSpectrumComap, IsScalarTower.algebraMap_eq R S T] | ||
simp only [PrimeSpectrum.comap_comp, ContinuousMap.coe_comp] | ||
apply GeneralizingMap.comp | ||
· rwa [← iff_generalizingMap_primeSpectrumComap] | ||
· rwa [← iff_generalizingMap_primeSpectrumComap] | ||
|
||
/-- If for every prime of `S`, the map `Spec Sₚ → Spec Rₚ` is surjective, | ||
the algebra satisfies going down. -/ | ||
lemma of_specComap_localRingHom_surjective | ||
(H : ∀ (P : Ideal S) [P.IsPrime], Function.Surjective | ||
(Localization.localRingHom (P.under R) P (algebraMap R S) rfl).specComap) : | ||
Algebra.HasGoingDown R S where | ||
exists_ideal_le_liesOver_of_lt {p} _ Q _ hlt := by | ||
let pl : Ideal (Localization.AtPrime <| Q.under R) := p.map (algebraMap R _) | ||
have : pl.IsPrime := | ||
Ideal.isPrime_map_of_isLocalizationAtPrime (Q.under R) hlt.le | ||
obtain ⟨⟨Pl, _⟩, hl⟩ := H Q ⟨pl, inferInstance⟩ | ||
refine ⟨Pl.under S, ?_, Ideal.IsPrime.under S Pl, ⟨?_⟩⟩ | ||
· exact (IsLocalization.AtPrime.orderIsoOfPrime _ Q ⟨Pl, inferInstance⟩).2.2 | ||
· replace hl : Pl.under _ = pl := by simpa using hl | ||
rw [Ideal.under_under, ← Ideal.under_under (B := (Localization.AtPrime <| Q.under R)) Pl, hl, | ||
Ideal.under_map_of_isLocalizationAtPrime (Q.under R) hlt.le] | ||
|
||
/-- Flat algebras satisfy the going down property. -/ | ||
@[stacks 00HS] | ||
instance of_flat [Module.Flat R S] : Algebra.HasGoingDown R S := by | ||
apply of_specComap_localRingHom_surjective | ||
intro P hP | ||
have : IsLocalHom (algebraMap (Localization.AtPrime <| P.under R) (Localization.AtPrime P)) := by | ||
rw [RingHom.algebraMap_toAlgebra] | ||
exact Localization.isLocalHom_localRingHom (P.under R) P (algebraMap R S) Ideal.LiesOver.over | ||
have : Module.FaithfullyFlat (Localization.AtPrime (P.under R)) (Localization.AtPrime P) := | ||
Module.FaithfullyFlat.of_flat_of_isLocalHom | ||
apply PrimeSpectrum.specComap_surjective_of_faithfullyFlat | ||
|
||
end Algebra.HasGoingDown |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters