Skip to content

Commit

Permalink
delete unused lemmas
Browse files Browse the repository at this point in the history
  • Loading branch information
xyzw12345 committed Feb 26, 2025
1 parent dee175f commit 5548105
Showing 1 changed file with 0 additions and 38 deletions.
38 changes: 0 additions & 38 deletions Mathlib/Algebra/Module/Length.lean
Original file line number Diff line number Diff line change
Expand Up @@ -19,8 +19,6 @@ variable [Module R M] [Module R M']

open Order

noncomputable def Submodule.length (p : Submodule R M) : ℕ∞ := Order.height p

variable (R M) in
/--
The length of a module M is defined to be the supremum of lengths of chains of submodules of M. We
Expand All @@ -29,51 +27,15 @@ WithBot ℕ∞ in spite of the fact that there is no module with length equal to
-/
noncomputable def Module.length : WithBot ℕ∞ := krullDim (α := Submodule R M)

@[simp]
lemma Module.length_nonneg : 0 ≤ Module.length R M :=
haveI : Nonempty (Submodule R M) := ⟨⊤⟩
krullDim_nonneg

@[simp]
lemma Module.length_ne_bot : Module.length R M ≠ ⊥ := by
intro h
rw [Module.length, krullDim_eq_bot_iff] at h
exact IsEmpty.false (⊤ : Submodule R M)

variable (R M) in
lemma Submodule.length_top_eq : (⊤ : Submodule R M).length = Module.length R M := by
simpa only [Submodule.length, Module.length] using height_top_eq_krullDim

lemma Submodule.length_eq (p : Submodule R M) : p.length = Module.length R p := by
rw [Module.length, Submodule.length, Order.krullDim_eq_iSup_height]
apply le_antisymm
· sorry
· sorry

lemma Submodule.sup_lt_length_succ {p : Submodule R M} (hp : ⊥ < p) :
(⨆ q < p, q.length) + 1 = p.length := by
show (⨆ q < p, q.length) + 1 = (p.length : WithTop ℕ)
rw [Submodule.length, height_eq_iSup_lt_height, iSup_subtype', iSup_subtype']
by_cases h : Nonempty { q // q < p }
· rw [ENat.iSup_add]; rfl
haveI : IsEmpty { q // q < p } := not_nonempty_iff.mp h
rw [iSup_of_empty, iSup_of_empty]
show 0 + 1 = 0
sorry

@[simp]
lemma Submodule.length_bot : (⊥ : Submodule R M).length = 0 := by
simpa only [Submodule.length, height_eq_zero] using isMin_bot

@[gcongr]
lemma Submodule.length_mono {p q : Submodule R M} (h : p ≤ q) : p.length ≤ q.length := height_mono h

lemma Submodule.length_succ_le_of_lt {p q : Submodule R M} (h : p < q) :
p.length + 1 ≤ q.length := by
rw [← Submodule.sup_lt_length_succ (lt_of_le_of_lt bot_le h)]
refine add_le_add_right ?_ 1
sorry

open Classical in
/--
The length of a module is greater than or equal to the trimmedLength of any
Expand Down

0 comments on commit 5548105

Please sign in to comment.