Skip to content

Commit

Permalink
style(Geometry/Manifold): remove superfluous indentation in doc-strin…
Browse files Browse the repository at this point in the history
  • Loading branch information
grunweg committed Feb 20, 2025
1 parent 7921910 commit 14165fc
Show file tree
Hide file tree
Showing 10 changed files with 54 additions and 56 deletions.
10 changes: 5 additions & 5 deletions Mathlib/Geometry/Manifold/ChartedSpace.lean
Original file line number Diff line number Diff line change
Expand Up @@ -677,7 +677,7 @@ theorem ChartedSpace.locallyConnectedSpace [LocallyConnectedSpace H] : LocallyCo
exact hsconn.isPreconnected.image _ ((e x).continuousOn_symm.mono hssubset)

/-- If a topological space `M` admits an atlas with locally path-connected charts,
then `M` itself is locally path-connected. -/
then `M` itself is locally path-connected. -/
theorem ChartedSpace.locPathConnectedSpace [LocPathConnectedSpace H] : LocPathConnectedSpace M := by
refine ⟨fun x ↦ ⟨fun s ↦ ⟨fun hs ↦ ?_, fun ⟨u, hu⟩ ↦ Filter.mem_of_superset hu.1.1 hu.2⟩⟩⟩
let e := chartAt H x
Expand Down Expand Up @@ -1090,8 +1090,8 @@ instance hasGroupoid_continuousGroupoid : HasGroupoid M (continuousGroupoid H) :
rw [continuousGroupoid, mem_groupoid_of_pregroupoid]
simp only [and_self_iff]

/-- If `G` is closed under restriction, the transition function between
the restriction of two charts `e` and `e'` lies in `G`. -/
/-- If `G` is closed under restriction, the transition function between the restriction of two
charts `e` and `e'` lies in `G`. -/
theorem StructureGroupoid.trans_restricted {e e' : PartialHomeomorph M H} {G : StructureGroupoid H}
(he : e ∈ atlas H M) (he' : e' ∈ atlas H M)
[HasGroupoid M G] [ClosedUnderRestriction G] {s : Opens M} (hs : Nonempty s) :
Expand Down Expand Up @@ -1261,14 +1261,14 @@ protected instance instChartedSpace : ChartedSpace H s where
use x

/-- If `s` is a non-empty open subset of `M`, every chart of `s` is the restriction
of some chart on `M`. -/
of some chart on `M`. -/
lemma chart_eq {s : Opens M} (hs : Nonempty s) {e : PartialHomeomorph s H} (he : e ∈ atlas H s) :
∃ x : s, e = (chartAt H (x : M)).subtypeRestr hs := by
rcases he with ⟨xset, ⟨x, hx⟩, he⟩
exact ⟨x, mem_singleton_iff.mp (by convert he)⟩

/-- If `t` is a non-empty open subset of `H`,
every chart of `t` is the restriction of some chart on `H`. -/
every chart of `t` is the restriction of some chart on `H`. -/
-- XXX: can I unify this with `chart_eq`?
lemma chart_eq' {t : Opens H} (ht : Nonempty t) {e' : PartialHomeomorph t H}
(he' : e' ∈ atlas H t) : ∃ x : t, e' = (chartAt H ↑x).subtypeRestr ht := by
Expand Down
18 changes: 9 additions & 9 deletions Mathlib/Geometry/Manifold/ContMDiff/Defs.lean
Original file line number Diff line number Diff line change
Expand Up @@ -368,7 +368,7 @@ theorem contMDiffWithinAt_iff_of_mem_maximalAtlas {x : M} (he : e ∈ maximalAtl
(contDiffWithinAt_localInvariantProp n).liftPropWithinAt_indep_chart he hx he' hy

/-- An alternative formulation of `contMDiffWithinAt_iff_of_mem_maximalAtlas`
if the set if `s` lies in `e.source`. -/
if the set if `s` lies in `e.source`. -/
theorem contMDiffWithinAt_iff_image {x : M} (he : e ∈ maximalAtlas I n M)
(he' : e' ∈ maximalAtlas I' n M')
(hs : s ⊆ e.source) (hx : x ∈ e.source) (hy : f x ∈ e'.source) :
Expand Down Expand Up @@ -434,10 +434,10 @@ theorem contMDiffOn_iff_of_mem_maximalAtlas' (he : e ∈ maximalAtlas I n M)
(e.continuousOn_writtenInExtend_iff hs h2s).1 h.continuousOn

/-- If the set where you want `f` to be `C^n` lies entirely in a single chart, and `f` maps it
into a single chart, the fact that `f` is `C^n` on that set can be expressed by purely looking in
these charts.
Note: this lemma uses `extChartAt I x '' s` instead of `(extChartAt I x).symm ⁻¹' s` to ensure
that this set lies in `(extChartAt I x).target`. -/
into a single chart, the fact that `f` is `C^n` on that set can be expressed by purely looking in
these charts.
Note: this lemma uses `extChartAt I x '' s` instead of `(extChartAt I x).symm ⁻¹' s` to ensure
that this set lies in `(extChartAt I x).target`. -/
theorem contMDiffOn_iff_of_subset_source {x : M} {y : M'} (hs : s ⊆ (chartAt H x).source)
(h2s : MapsTo f s (chartAt H' y).source) :
ContMDiffOn I I' n f s ↔
Expand All @@ -447,10 +447,10 @@ theorem contMDiffOn_iff_of_subset_source {x : M} {y : M'} (hs : s ⊆ (chartAt H
h2s

/-- If the set where you want `f` to be `C^n` lies entirely in a single chart, and `f` maps it
into a single chart, the fact that `f` is `C^n` on that set can be expressed by purely looking in
these charts.
Note: this lemma uses `extChartAt I x '' s` instead of `(extChartAt I x).symm ⁻¹' s` to ensure
that this set lies in `(extChartAt I x).target`. -/
into a single chart, the fact that `f` is `C^n` on that set can be expressed by purely looking in
these charts.
Note: this lemma uses `extChartAt I x '' s` instead of `(extChartAt I x).symm ⁻¹' s` to ensure
that this set lies in `(extChartAt I x).target`. -/
theorem contMDiffOn_iff_of_subset_source' {x : M} {y : M'} (hs : s ⊆ (extChartAt I x).source)
(h2s : MapsTo f s (extChartAt I' y).source) :
ContMDiffOn I I' n f s ↔
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Geometry/Manifold/IntegralCurve/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -137,7 +137,7 @@ lemma IsIntegralCurve.continuous (hγ : IsIntegralCurve γ v) : Continuous γ :=
variable [IsManifold I 1 M]

/-- If `γ` is an integral curve of a vector field `v`, then `γ t` is tangent to `v (γ t)` when
expressed in the local chart around the initial point `γ t₀`. -/
expressed in the local chart around the initial point `γ t₀`. -/
lemma IsIntegralCurveOn.hasDerivAt (hγ : IsIntegralCurveOn γ v s) {t : ℝ} (ht : t ∈ s)
(hsrc : γ t ∈ (extChartAt I (γ t₀)).source) :
HasDerivAt ((extChartAt I (γ t₀)) ∘ γ)
Expand Down
37 changes: 18 additions & 19 deletions Mathlib/Geometry/Manifold/IntegralCurve/UniformTime.lean
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ variable
[T2Space M] {γ γ' : ℝ → M} {v : (x : M) → TangentSpace I x} {s s' : Set ℝ} {t₀ : ℝ}

/-- This is the uniqueness theorem of integral curves applied to a real-indexed family of integral
curves with the same starting point. -/
curves with the same starting point. -/
lemma eqOn_of_isIntegralCurveOn_Ioo [BoundarylessManifold I M]
(hv : ContMDiff I I.tangent 1 (fun x ↦ (⟨x, v x⟩ : TangentBundle I M))) {x : M}
(γ : ℝ → ℝ → M) (hγx : ∀ a, γ a 0 = x) (hγ : ∀ a > 0, IsIntegralCurveOn (γ a) v (Ioo (-a) a))
Expand All @@ -48,9 +48,8 @@ lemma eqOn_of_isIntegralCurveOn_Ioo [BoundarylessManifold I M]
· apply Ioo_subset_Ioo <;> linarith

/-- For a family of integral curves `γ : ℝ → ℝ → M` with the same starting point `γ 0 = x` such that
each `γ a` is defined on `Ioo (-a) a`, the global curve `γ_ext := fun t ↦ γ (|t| + 1) t` agrees
with each `γ a` on `Ioo (-a) a`. This will help us show that `γ_ext` is a global integral
curve. -/
each `γ a` is defined on `Ioo (-a) a`, the global curve `γ_ext := fun t ↦ γ (|t| + 1) t` agrees
with each `γ a` on `Ioo (-a) a`. This will help us show that `γ_ext` is a global integral curve. -/
lemma eqOn_abs_add_one_of_isIntegralCurveOn_Ioo [BoundarylessManifold I M]
(hv : ContMDiff I I.tangent 1 (fun x ↦ (⟨x, v x⟩ : TangentBundle I M))) {x : M}
(γ : ℝ → ℝ → M) (hγx : ∀ a, γ a 0 = x) (hγ : ∀ a > 0, IsIntegralCurveOn (γ a) v (Ioo (-a) a))
Expand All @@ -63,8 +62,8 @@ lemma eqOn_abs_add_one_of_isIntegralCurveOn_Ioo [BoundarylessManifold I M]
(neg_lt_self_iff.mp <| lt_trans ht.1 ht.2) (not_lt.mp hlt) ht |>.symm

/-- For a family of integral curves `γ : ℝ → ℝ → M` with the same starting point `γ 0 = x` such that
each `γ a` is defined on `Ioo (-a) a`, the function `γ_ext := fun t ↦ γ (|t| + 1) t` is a global
integral curve. -/
each `γ a` is defined on `Ioo (-a) a`, the function `γ_ext := fun t ↦ γ (|t| + 1) t` is a global
integral curve. -/
lemma isIntegralCurve_abs_add_one_of_isIntegralCurveOn_Ioo [BoundarylessManifold I M]
(hv : ContMDiff I I.tangent 1 (fun x ↦ (⟨x, v x⟩ : TangentBundle I M))) {x : M}
(γ : ℝ → ℝ → M) (hγx : ∀ a, γ a 0 = x) (hγ : ∀ a > 0, IsIntegralCurveOn (γ a) v (Ioo (-a) a)) :
Expand All @@ -82,8 +81,8 @@ lemma isIntegralCurve_abs_add_one_of_isIntegralCurveOn_Ioo [BoundarylessManifold
exact Ioo_mem_nhds this.1 this.2

/-- The existence of a global integral curve is equivalent to the existence of a family of local
integral curves `γ : ℝ → ℝ → M` with the same starting point `γ 0 = x` such that each `γ a` is
defined on `Ioo (-a) a`. -/
integral curves `γ : ℝ → ℝ → M` with the same starting point `γ 0 = x` such that each `γ a` is
defined on `Ioo (-a) a`. -/
lemma exists_isIntegralCurve_iff_exists_isIntegralCurveOn_Ioo [BoundarylessManifold I M]
(hv : ContMDiff I I.tangent 1 (fun x ↦ (⟨x, v x⟩ : TangentBundle I M))) (x : M) :
(∃ γ, γ 0 = x ∧ IsIntegralCurve γ v) ↔
Expand All @@ -94,9 +93,9 @@ lemma exists_isIntegralCurve_iff_exists_isIntegralCurveOn_Ioo [BoundarylessManif
isIntegralCurve_abs_add_one_of_isIntegralCurveOn_Ioo hv γ hγx (fun a _ ↦ hγ a)⟩

/-- Let `γ` and `γ'` be integral curves defined on `Ioo a b` and `Ioo a' b'`, respectively. Then,
`piecewise (Ioo a b) γ γ'` is equal to `γ` and `γ'` in their respective domains.
`Set.piecewise_eqOn` shows the equality for `γ` by definition, while this lemma shows the equality
for `γ'` by the uniqueness of integral curves. -/
`piecewise (Ioo a b) γ γ'` is equal to `γ` and `γ'` in their respective domains.
`Set.piecewise_eqOn` shows the equality for `γ` by definition, while this lemma shows the equality
for `γ'` by the uniqueness of integral curves. -/
lemma eqOn_piecewise_of_isIntegralCurveOn_Ioo [BoundarylessManifold I M]
(hv : ContMDiff I I.tangent 1 (fun x ↦ (⟨x, v x⟩ : TangentBundle I M)))
{a b a' b' : ℝ} (hγ : IsIntegralCurveOn γ v (Ioo a b))
Expand All @@ -117,12 +116,12 @@ lemma eqOn_piecewise_of_isIntegralCurveOn_Ioo [BoundarylessManifold I M]

/-- The extension of an integral curve by another integral curve is an integral curve.
If two integral curves are defined on overlapping open intervals, and they agree at a point in
their common domain, then they can be patched together to form a longer integral curve.
If two integral curves are defined on overlapping open intervals, and they agree at a point in
their common domain, then they can be patched together to form a longer integral curve.
This is stated for manifolds without boundary for simplicity. We actually only need to assume that
the images of `γ` and `γ'` lie in the interior of the manifold. TODO: Generalise to manifolds with
boundary. -/
This is stated for manifolds without boundary for simplicity. We actually only need to assume that
the images of `γ` and `γ'` lie in the interior of the manifold.
TODO: Generalise to manifolds with boundary. -/
lemma isIntegralCurveOn_piecewise [BoundarylessManifold I M]
(hv : ContMDiff I I.tangent 1 (fun x ↦ (⟨x, v x⟩ : TangentBundle I M)))
{a b a' b' : ℝ} (hγ : IsIntegralCurveOn γ v (Ioo a b))
Expand All @@ -145,10 +144,10 @@ lemma isIntegralCurveOn_piecewise [BoundarylessManifold I M]
eqOn_piecewise_of_isIntegralCurveOn_Ioo hv hγ hγ' ht₀ h⟩

/-- If there exists `ε > 0` such that the local integral curve at each point `x : M` is defined at
least on an open interval `Ioo (-ε) ε`, then every point on `M` has a global integral
curve passing through it.
least on an open interval `Ioo (-ε) ε`, then every point on `M` has a global integral curve
passing through it.
See Lemma 9.15, [J.M. Lee (2012)][lee2012]. -/
See Lemma 9.15, [J.M. Lee (2012)][lee2012]. -/
lemma exists_isIntegralCurve_of_isIntegralCurveOn [BoundarylessManifold I M]
{v : (x : M) → TangentSpace I x}
(hv : ContMDiff I I.tangent 1 (fun x ↦ (⟨x, v x⟩ : TangentBundle I M)))
Expand Down
8 changes: 4 additions & 4 deletions Mathlib/Geometry/Manifold/IsManifold/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -194,7 +194,7 @@ protected def symm : PartialEquiv E H :=
I.toPartialEquiv.symm

/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
because it is a composition of multiple projections. -/
def Simps.apply (𝕜 : Type*) [NontriviallyNormedField 𝕜] (E : Type*) [NormedAddCommGroup E]
[NormedSpace 𝕜 E] (H : Type*) [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) : H → E :=
I
Expand Down Expand Up @@ -480,8 +480,8 @@ end ModelWithCornersProd
section Boundaryless

/-- Property ensuring that the model with corners `I` defines manifolds without boundary. This
differs from the more general `BoundarylessManifold`, which requires every point on the manifold
to be an interior point. -/
differs from the more general `BoundarylessManifold`, which requires every point on the manifold
to be an interior point. -/
class ModelWithCorners.Boundaryless {𝕜 : Type*} [NontriviallyNormedField 𝕜] {E : Type*}
[NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type*} [TopologicalSpace H]
(I : ModelWithCorners 𝕜 E H) : Prop where
Expand Down Expand Up @@ -569,7 +569,7 @@ def contDiffPregroupoid : Pregroupoid H where

variable (n I) in
/-- Given a model with corners `(E, H)`, we define the groupoid of invertible `C^n` transformations
of `H` as the invertible maps that are `C^n` when read in `E` through `I`. -/
of `H` as the invertible maps that are `C^n` when read in `E` through `I`. -/
def contDiffGroupoid : StructureGroupoid H :=
Pregroupoid.groupoid (contDiffPregroupoid n I)

Expand Down
7 changes: 3 additions & 4 deletions Mathlib/Geometry/Manifold/IsManifold/ExtChartAt.lean
Original file line number Diff line number Diff line change
Expand Up @@ -154,7 +154,7 @@ lemma interior_extend_target_subset_interior_range :
exact inter_subset_right

/-- If `y ∈ f.target` and `I y ∈ interior (range I)`,
then `I y` is an interior point of `(I ∘ f).target`. -/
then `I y` is an interior point of `(I ∘ f).target`. -/
lemma mem_interior_extend_target {y : H} (hy : y ∈ f.target)
(hy' : I y ∈ interior (range I)) : I y ∈ interior (f.extend I).target := by
rw [f.extend_target, interior_inter, (f.open_target.preimage I.continuous_symm).interior_eq,
Expand Down Expand Up @@ -781,7 +781,7 @@ variable
{M : Type*} [TopologicalSpace M] [ChartedSpace H M]

/-- A finite-dimensional manifold modelled on a locally compact field
(such as ℝ, ℂ or the `p`-adic numbers) is locally compact. -/
(such as ℝ, ℂ or the `p`-adic numbers) is locally compact. -/
lemma Manifold.locallyCompact_of_finiteDimensional
(I : ModelWithCorners 𝕜 E H) [LocallyCompactSpace 𝕜] [FiniteDimensional 𝕜 E] :
LocallyCompactSpace M := by
Expand Down Expand Up @@ -811,8 +811,7 @@ lemma LocallyCompactSpace.of_locallyCompact_manifold (I : ModelWithCorners 𝕜
exact interior_mono (extChartAt_target_subset_range x) hy

/-- Riesz's theorem applied to manifolds: a locally compact manifolds must be modelled on a
finite-dimensional space. This is the converse to
`Manifold.locallyCompact_of_finiteDimensional`. -/
finite-dimensional space. This is the converse to `Manifold.locallyCompact_of_finiteDimensional`. -/
theorem FiniteDimensional.of_locallyCompact_manifold
[CompleteSpace 𝕜] (I : ModelWithCorners 𝕜 E H) [Nonempty M] [LocallyCompactSpace M] :
FiniteDimensional 𝕜 E := by
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Geometry/Manifold/IsManifold/InteriorBoundary.lean
Original file line number Diff line number Diff line change
Expand Up @@ -131,7 +131,7 @@ lemma _root_.range_mem_nhds_isInteriorPoint {x : M} (h : I.IsInteriorPoint x) :
exact ⟨interior (range I), interior_subset, isOpen_interior, h⟩

/-- Type class for manifold without boundary. This differs from `ModelWithCorners.Boundaryless`,
which states that the `ModelWithCorners` maps to the whole model vector space. -/
which states that the `ModelWithCorners` maps to the whole model vector space. -/
class _root_.BoundarylessManifold {𝕜 : Type*} [NontriviallyNormedField 𝕜]
{E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
{H : Type*} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H)
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Geometry/Manifold/LocalDiffeomorph.lean
Original file line number Diff line number Diff line change
Expand Up @@ -133,12 +133,12 @@ end PartialDiffeomorph
variable {M N}

/-- `f : M → N` is called a **`C^n` local diffeomorphism at *x*** iff there exist
open sets `U ∋ x` and `V ∋ f x` and a diffeomorphism `Φ : U → V` such that `f = Φ` on `U`. -/
open sets `U ∋ x` and `V ∋ f x` and a diffeomorphism `Φ : U → V` such that `f = Φ` on `U`. -/
def IsLocalDiffeomorphAt (f : M → N) (x : M) : Prop :=
∃ Φ : PartialDiffeomorph I J M N n, x ∈ Φ.source ∧ EqOn f Φ Φ.source

/-- `f : M → N` is called a **`C^n` local diffeomorphism on *s*** iff it is a local diffeomorphism
at each `x : s`. -/
at each `x : s`. -/
def IsLocalDiffeomorphOn (f : M → N) (s : Set M) : Prop :=
∀ x : s, IsLocalDiffeomorphAt I J n f x

Expand Down
18 changes: 9 additions & 9 deletions Mathlib/Geometry/Manifold/MFDeriv/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -296,7 +296,7 @@ theorem mdifferentiableWithinAt_iff_of_mem_maximalAtlas {x : M} (he : e ∈ maxi
differentiableWithinAt_localInvariantProp.liftPropWithinAt_indep_chart he hx he' hy

/-- An alternative formulation of `mdifferentiableWithinAt_iff_of_mem_maximalAtlas`
if the set if `s` lies in `e.source`. -/
if the set if `s` lies in `e.source`. -/
theorem mdifferentiableWithinAt_iff_image {x : M} (he : e ∈ maximalAtlas I 1 M)
(he' : e' ∈ maximalAtlas I' 1 M') (hs : s ⊆ e.source) (hx : x ∈ e.source)
(hy : f x ∈ e'.source) :
Expand Down Expand Up @@ -365,10 +365,10 @@ theorem mdifferentiableOn_iff_of_mem_maximalAtlas' (he : e ∈ maximalAtlas I 1
(e.continuousOn_writtenInExtend_iff hs h2s).1 h.continuousOn

/-- If the set where you want `f` to be smooth lies entirely in a single chart, and `f` maps it
into a single chart, the smoothness of `f` on that set can be expressed by purely looking in
these charts.
Note: this lemma uses `extChartAt I x '' s` instead of `(extChartAt I x).symm ⁻¹' s` to ensure
that this set lies in `(extChartAt I x).target`. -/
into a single chart, the smoothness of `f` on that set can be expressed by purely looking in
these charts.
Note: this lemma uses `extChartAt I x '' s` instead of `(extChartAt I x).symm ⁻¹' s` to ensure
that this set lies in `(extChartAt I x).target`. -/
theorem mdifferentiableOn_iff_of_subset_source {x : M} {y : M'} (hs : s ⊆ (chartAt H x).source)
(h2s : MapsTo f s (chartAt H' y).source) :
MDifferentiableOn I I' f s ↔
Expand All @@ -378,10 +378,10 @@ theorem mdifferentiableOn_iff_of_subset_source {x : M} {y : M'} (hs : s ⊆ (cha
(chart_mem_maximalAtlas y) hs h2s

/-- If the set where you want `f` to be smooth lies entirely in a single chart, and `f` maps it
into a single chart, the smoothness of `f` on that set can be expressed by purely looking in
these charts.
Note: this lemma uses `extChartAt I x '' s` instead of `(extChartAt I x).symm ⁻¹' s` to ensure
that this set lies in `(extChartAt I x).target`. -/
into a single chart, the smoothness of `f` on that set can be expressed by purely looking in
these charts.
Note: this lemma uses `extChartAt I x '' s` instead of `(extChartAt I x).symm ⁻¹' s` to ensure
that this set lies in `(extChartAt I x).target`. -/
theorem mdifferentiableOn_iff_of_subset_source' {x : M} {y : M'} (hs : s ⊆ (extChartAt I x).source)
(h2s : MapsTo f s (extChartAt I' y).source) :
MDifferentiableOn I I' f s ↔
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Geometry/Manifold/PartitionOfUnity.lean
Original file line number Diff line number Diff line change
Expand Up @@ -213,7 +213,7 @@ section finsupport
variable {s : Set M} (ρ : SmoothPartitionOfUnity ι I M s) (x₀ : M)

/-- The support of a smooth partition of unity at a point `x₀` as a `Finset`.
This is the set of `i : ι` such that `x₀ ∈ support f i`, i.e. `f i ≠ x₀`. -/
This is the set of `i : ι` such that `x₀ ∈ support f i`, i.e. `f i ≠ x₀`. -/
def finsupport : Finset ι := ρ.toPartitionOfUnity.finsupport x₀

@[simp]
Expand Down Expand Up @@ -245,7 +245,7 @@ theorem finite_tsupport : {i | x₀ ∈ tsupport (ρ i)}.Finite :=
ρ.toPartitionOfUnity.finite_tsupport _

/-- The tsupport of a partition of unity at a point `x₀` as a `Finset`.
This is the set of `i : ι` such that `x₀ ∈ tsupport f i`. -/
This is the set of `i : ι` such that `x₀ ∈ tsupport f i`. -/
def fintsupport (x : M) : Finset ι :=
(ρ.finite_tsupport x).toFinset

Expand Down

0 comments on commit 14165fc

Please sign in to comment.