Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: custom recursors for Nat #193

Merged
merged 3 commits into from
Aug 15, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
94 changes: 94 additions & 0 deletions Std/Data/Nat/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,100 @@ import Std.Classes.Dvd

namespace Nat

/--
Recursor identical to `Nat.rec` but uses notations `0` for `Nat.zero` and `·+1` for `Nat.succ`
-/
@[elab_as_elim]
protected def recAux {motive : Nat → Sort _} (zero : motive 0) (succ : ∀ n, motive n → motive (n+1)) :
(t : Nat) → motive t
| 0 => zero
| _+1 => succ _ (Nat.recAux zero succ _)

/--
Recursor identical to `Nat.recOn` but uses notations `0` for `Nat.zero` and `·+1` for `Nat.succ`
-/
@[elab_as_elim]
protected def recAuxOn {motive : Nat → Sort _} (t : Nat) (zero : motive 0)
(succ : ∀ n, motive n → motive (n+1)) : motive t := Nat.recAux zero succ t

/--
Recursor identical to `Nat.casesOn` but uses notations `0` for `Nat.zero` and `·+1` for `Nat.succ`
-/
@[elab_as_elim]
protected def casesAuxOn {motive : Nat → Sort _} (t : Nat) (zero : motive 0)
(succ : ∀ n, motive (n+1)) : motive t := Nat.recAux zero (fun n _ => succ n) t

/--
Strong recursor for `Nat`
-/
@[elab_as_elim]
protected def strongRec {motive : Nat → Sort _} (ind : ∀ n, (∀ m, m < n → motive m) → motive n)
(t : Nat) : motive t := ind t fun m _ => Nat.strongRec ind m

/--
Strong recursor for `Nat`
-/
@[elab_as_elim]
protected def strongRecOn (t : Nat) {motive : Nat → Sort _}
(ind : ∀ n, (∀ m, m < n → motive m) → motive n) : motive t := Nat.strongRec ind t

/--
Simple diagonal recursor for `Nat`
-/
@[elab_as_elim]
protected def recDiagAux {motive : Nat → Nat → Sort _}
(zero_left : ∀ n, motive 0 n)
(zero_right : ∀ m, motive m 0)
(succ_succ : ∀ m n, motive m n → motive (m+1) (n+1)) :
(m n : Nat) → motive m n
| 0, _ => zero_left _
| _, 0 => zero_right _
| _+1, _+1 => succ_succ _ _ (Nat.recDiagAux zero_left zero_right succ_succ _ _)

/--
Diagonal recursor for `Nat`
-/
@[elab_as_elim]
protected def recDiag {motive : Nat → Nat → Sort _}
(zero_zero : motive 0 0)
(zero_succ : ∀ n, motive 0 n → motive 0 (n+1))
(succ_zero : ∀ m, motive m 0 → motive (m+1) 0)
(succ_succ : ∀ m n, motive m n → motive (m+1) (n+1)) :
(m n : Nat) → motive m n := Nat.recDiagAux left right succ_succ
where
/-- Left leg for `Nat.recDiag` -/
left : ∀ n, motive 0 n
| 0 => zero_zero
| _+1 => zero_succ _ (left _)
/-- Right leg for `Nat.recDiag` -/
right : ∀ m, motive m 0
| 0 => zero_zero
| _+1 => succ_zero _ (right _)

/--
Diagonal recursor for `Nat`
-/
@[elab_as_elim]
protected def recDiagOn {motive : Nat → Nat → Sort _} (m n : Nat)
(zero_zero : motive 0 0)
(zero_succ : ∀ n, motive 0 n → motive 0 (n+1))
(succ_zero : ∀ m, motive m 0 → motive (m+1) 0)
(succ_succ : ∀ m n, motive m n → motive (m+1) (n+1)) :
motive m n := Nat.recDiag zero_zero zero_succ succ_zero succ_succ m n

/--
Diagonal recursor for `Nat`
-/
@[elab_as_elim]
protected def casesDiagOn {motive : Nat → Nat → Sort _} (m n : Nat)
(zero_zero : motive 0 0)
(zero_succ : ∀ n, motive 0 (n+1))
(succ_zero : ∀ m, motive (m+1) 0)
(succ_succ : ∀ m n, motive (m+1) (n+1)) :
motive m n :=
Nat.recDiag zero_zero (fun _ _ => zero_succ _) (fun _ _ => succ_zero _)
(fun _ _ _ => succ_succ _ _) m n

/--
Divisibility of natural numbers. `a ∣ b` (typed as `\|`) says that
there is some `c` such that `b = a * c`.
Expand Down
122 changes: 121 additions & 1 deletion Std/Data/Nat/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,127 @@ import Std.Data.Nat.Basic

namespace Nat

/-! ## le/lt -/
/-! ### rec/cases -/

@[simp] theorem recAux_zero {motive : Nat → Sort _} (zero : motive 0)
(succ : ∀ n, motive n → motive (n+1)) :
Nat.recAux zero succ 0 = zero := rfl

theorem recAux_succ {motive : Nat → Sort _} (zero : motive 0)
(succ : ∀ n, motive n → motive (n+1)) (n) :
Nat.recAux zero succ (n+1) = succ n (Nat.recAux zero succ n) := rfl

@[simp] theorem recAuxOn_zero {motive : Nat → Sort _} (zero : motive 0)
(succ : ∀ n, motive n → motive (n+1)) :
Nat.recAuxOn 0 zero succ = zero := rfl

theorem recAuxOn_succ {motive : Nat → Sort _} (zero : motive 0)
(succ : ∀ n, motive n → motive (n+1)) (n) :
Nat.recAuxOn (n+1) zero succ = succ n (Nat.recAuxOn n zero succ) := rfl

@[simp] theorem casesAuxOn_zero {motive : Nat → Sort _} (zero : motive 0)
(succ : ∀ n, motive (n+1)) :
Nat.casesAuxOn 0 zero succ = zero := rfl

@[simp] theorem casesAuxOn_succ {motive : Nat → Sort _} (zero : motive 0)
(succ : ∀ n, motive (n+1)) (n) :
Nat.casesAuxOn (n+1) zero succ = succ n := rfl

theorem strongRec_eq {motive : Nat → Sort _} (ind : ∀ n, (∀ m, m < n → motive m) → motive n)
(t : Nat) : Nat.strongRec ind t = ind t fun m _ => Nat.strongRec ind m := by
conv => lhs; unfold Nat.strongRec

theorem strongRecOn_eq {motive : Nat → Sort _} (ind : ∀ n, (∀ m, m < n → motive m) → motive n)
(t : Nat) : Nat.strongRecOn t ind = ind t fun m _ => Nat.strongRecOn m ind := Nat.strongRec_eq ..

@[simp] theorem recDiagAux_zero_left {motive : Nat → Nat → Sort _}
(zero_left : ∀ n, motive 0 n) (zero_right : ∀ m, motive m 0)
(succ_succ : ∀ m n, motive m n → motive (m+1) (n+1)) (n) :
Nat.recDiagAux zero_left zero_right succ_succ 0 n = zero_left n := by cases n <;> rfl

@[simp] theorem recDiagAux_zero_right {motive : Nat → Nat → Sort _}
(zero_left : ∀ n, motive 0 n) (zero_right : ∀ m, motive m 0)
(succ_succ : ∀ m n, motive m n → motive (m+1) (n+1)) (m)
(h : zero_left 0 = zero_right 0 := by first | assumption | trivial) :
Nat.recDiagAux zero_left zero_right succ_succ m 0 = zero_right m := by cases m; exact h; rfl

theorem recDiagAux_succ_succ {motive : Nat → Nat → Sort _}
(zero_left : ∀ n, motive 0 n) (zero_right : ∀ m, motive m 0)
(succ_succ : ∀ m n, motive m n → motive (m+1) (n+1)) (m n) :
Nat.recDiagAux zero_left zero_right succ_succ (m+1) (n+1)
= succ_succ m n (Nat.recDiagAux zero_left zero_right succ_succ m n) := rfl

@[simp] theorem recDiag_zero_zero {motive : Nat → Nat → Sort _} (zero_zero : motive 0 0)
(zero_succ : ∀ n, motive 0 n → motive 0 (n+1)) (succ_zero : ∀ m, motive m 0 → motive (m+1) 0)
(succ_succ : ∀ m n, motive m n → motive (m+1) (n+1)) :
Nat.recDiag (motive:=motive) zero_zero zero_succ succ_zero succ_succ 0 0 = zero_zero := rfl

theorem recDiag_zero_succ {motive : Nat → Nat → Sort _} (zero_zero : motive 0 0)
(zero_succ : ∀ n, motive 0 n → motive 0 (n+1)) (succ_zero : ∀ m, motive m 0 → motive (m+1) 0)
(succ_succ : ∀ m n, motive m n → motive (m+1) (n+1)) (n) :
Nat.recDiag zero_zero zero_succ succ_zero succ_succ 0 (n+1)
= zero_succ n (Nat.recDiag zero_zero zero_succ succ_zero succ_succ 0 n) := by
simp [Nat.recDiag]; rfl

theorem recDiag_succ_zero {motive : Nat → Nat → Sort _} (zero_zero : motive 0 0)
(zero_succ : ∀ n, motive 0 n → motive 0 (n+1)) (succ_zero : ∀ m, motive m 0 → motive (m+1) 0)
(succ_succ : ∀ m n, motive m n → motive (m+1) (n+1)) (m) :
Nat.recDiag zero_zero zero_succ succ_zero succ_succ (m+1) 0
= succ_zero m (Nat.recDiag zero_zero zero_succ succ_zero succ_succ m 0) := by
simp [Nat.recDiag]; cases m <;> rfl

theorem recDiag_succ_succ {motive : Nat → Nat → Sort _} (zero_zero : motive 0 0)
(zero_succ : ∀ n, motive 0 n → motive 0 (n+1)) (succ_zero : ∀ m, motive m 0 → motive (m+1) 0)
(succ_succ : ∀ m n, motive m n → motive (m+1) (n+1)) (m n) :
Nat.recDiag zero_zero zero_succ succ_zero succ_succ (m+1) (n+1)
= succ_succ m n (Nat.recDiag zero_zero zero_succ succ_zero succ_succ m n) := rfl

@[simp] theorem recDiagOn_zero_zero {motive : Nat → Nat → Sort _} (zero_zero : motive 0 0)
(zero_succ : ∀ n, motive 0 n → motive 0 (n+1)) (succ_zero : ∀ m, motive m 0 → motive (m+1) 0)
(succ_succ : ∀ m n, motive m n → motive (m+1) (n+1)) :
Nat.recDiagOn (motive:=motive) 0 0 zero_zero zero_succ succ_zero succ_succ = zero_zero := rfl

theorem recDiagOn_zero_succ {motive : Nat → Nat → Sort _} (zero_zero : motive 0 0)
(zero_succ : ∀ n, motive 0 n → motive 0 (n+1)) (succ_zero : ∀ m, motive m 0 → motive (m+1) 0)
(succ_succ : ∀ m n, motive m n → motive (m+1) (n+1)) (n) :
Nat.recDiagOn 0 (n+1) zero_zero zero_succ succ_zero succ_succ
= zero_succ n (Nat.recDiagOn 0 n zero_zero zero_succ succ_zero succ_succ) :=
Nat.recDiag_zero_succ ..

theorem recDiagOn_succ_zero {motive : Nat → Nat → Sort _} (zero_zero : motive 0 0)
(zero_succ : ∀ n, motive 0 n → motive 0 (n+1)) (succ_zero : ∀ m, motive m 0 → motive (m+1) 0)
(succ_succ : ∀ m n, motive m n → motive (m+1) (n+1)) (m) :
Nat.recDiagOn (m+1) 0 zero_zero zero_succ succ_zero succ_succ
= succ_zero m (Nat.recDiagOn m 0 zero_zero zero_succ succ_zero succ_succ) :=
Nat.recDiag_succ_zero ..

theorem recDiagOn_succ_succ {motive : Nat → Nat → Sort _} (zero_zero : motive 0 0)
(zero_succ : ∀ n, motive 0 n → motive 0 (n+1)) (succ_zero : ∀ m, motive m 0 → motive (m+1) 0)
(succ_succ : ∀ m n, motive m n → motive (m+1) (n+1)) (m n) :
Nat.recDiagOn (m+1) (n+1) zero_zero zero_succ succ_zero succ_succ
= succ_succ m n (Nat.recDiagOn m n zero_zero zero_succ succ_zero succ_succ) := rfl

@[simp] theorem casesDiagOn_zero_zero {motive : Nat → Nat → Sort _} (zero_zero : motive 0 0)
(zero_succ : ∀ n, motive 0 (n+1)) (succ_zero : ∀ m, motive (m+1) 0)
(succ_succ : ∀ m n, motive (m+1) (n+1)) :
Nat.casesDiagOn 0 0 (motive:=motive) zero_zero zero_succ succ_zero succ_succ = zero_zero := rfl

@[simp] theorem casesDiagOn_zero_succ {motive : Nat → Nat → Sort _} (zero_zero : motive 0 0)
(zero_succ : ∀ n, motive 0 (n+1)) (succ_zero : ∀ m, motive (m+1) 0)
(succ_succ : ∀ m n, motive (m+1) (n+1)) (n) :
Nat.casesDiagOn 0 (n+1) zero_zero zero_succ succ_zero succ_succ = zero_succ n := rfl

@[simp] theorem casesDiagOn_succ_zero {motive : Nat → Nat → Sort _} (zero_zero : motive 0 0)
(zero_succ : ∀ n, motive 0 (n+1)) (succ_zero : ∀ m, motive (m+1) 0)
(succ_succ : ∀ m n, motive (m+1) (n+1)) (m) :
Nat.casesDiagOn (m+1) 0 zero_zero zero_succ succ_zero succ_succ = succ_zero m := rfl

@[simp] theorem casesDiagOn_succ_succ {motive : Nat → Nat → Sort _} (zero_zero : motive 0 0)
(zero_succ : ∀ n, motive 0 (n+1)) (succ_zero : ∀ m, motive (m+1) 0)
(succ_succ : ∀ m n, motive (m+1) (n+1)) (m n) :
Nat.casesDiagOn (m+1) (n+1) zero_zero zero_succ succ_zero succ_succ = succ_succ m n := rfl

/-! ### le/lt -/

theorem ne_of_gt {a b : Nat} (h : b < a) : a ≠ b := (ne_of_lt h).symm

Expand Down