Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix dylora create_modules error when training sdxl #1126

Merged
merged 2 commits into from
Feb 24, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 28 additions & 3 deletions networks/dylora.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,9 @@
import math
import os
import random
from typing import List, Tuple, Union
from typing import Dict, List, Optional, Tuple, Type, Union
from diffusers import AutoencoderKL
from transformers import CLIPTextModel
import torch
from torch import nn
from library.utils import setup_logging
Expand Down Expand Up @@ -168,7 +170,15 @@ def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, miss
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)


def create_network(multiplier, network_dim, network_alpha, vae, text_encoder, unet, **kwargs):
def create_network(
multiplier: float,
network_dim: Optional[int],
network_alpha: Optional[float],
vae: AutoencoderKL,
text_encoder: Union[CLIPTextModel, List[CLIPTextModel]],
unet,
**kwargs,
):
if network_dim is None:
network_dim = 4 # default
if network_alpha is None:
Expand All @@ -185,6 +195,7 @@ def create_network(multiplier, network_dim, network_alpha, vae, text_encoder, un
conv_alpha = 1.0
else:
conv_alpha = float(conv_alpha)

if unit is not None:
unit = int(unit)
else:
Expand Down Expand Up @@ -309,8 +320,22 @@ def create_modules(is_unet, root_module: torch.nn.Module, target_replace_modules
lora = module_class(lora_name, child_module, self.multiplier, dim, alpha, unit)
loras.append(lora)
return loras

text_encoders = text_encoder if type(text_encoder) == list else [text_encoder]

self.text_encoder_loras = []
for i, text_encoder in enumerate(text_encoders):
if len(text_encoders) > 1:
index = i + 1
print(f"create LoRA for Text Encoder {index}")
else:
index = None
print(f"create LoRA for Text Encoder")

text_encoder_loras = create_modules(False, text_encoder, DyLoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
self.text_encoder_loras.extend(text_encoder_loras)

self.text_encoder_loras = create_modules(False, text_encoder, DyLoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
# self.text_encoder_loras = create_modules(False, text_encoder, DyLoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
logger.info(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")

# extend U-Net target modules if conv2d 3x3 is enabled, or load from weights
Expand Down