Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

BertMaskedLM Task Model and Preprocessor #774

Merged
merged 22 commits into from
Mar 3, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
22 commits
Select commit Hold shift + click to select a range
45ac327
bert_masekd_lm init
Cyber-Machine Feb 23, 2023
d9f4fb1
Merge branch 'master' into BertMaskedLM
Cyber-Machine Feb 23, 2023
aa91c13
WIP : BERT MASKED LM
Cyber-Machine Feb 23, 2023
c076ce9
Added Tests
Cyber-Machine Feb 24, 2023
1beeb98
Black Formatting
Cyber-Machine Feb 24, 2023
88acb6d
Merge branch 'master' into BertMaskedLM
Cyber-Machine Feb 24, 2023
e61eb42
Fixed Format
Cyber-Machine Feb 24, 2023
5de1edd
Merge branch 'BertMaskedLM' of https://github.com/Cyber-Machine/keras…
Cyber-Machine Feb 24, 2023
13a2eb4
Fixed formatting
Cyber-Machine Feb 25, 2023
1a12b69
black + lint.sh
Cyber-Machine Feb 25, 2023
3a1eb8a
Reformat codew
Cyber-Machine Feb 26, 2023
7103acc
Merge branch 'master' of https://github.com/Cyber-Machine/keras-nlp i…
Cyber-Machine Feb 26, 2023
fcbbfd3
Merge branch 'keras-team:master' into BertMaskedLM
Cyber-Machine Feb 26, 2023
a402866
Merge branch 'BertMaskedLM' of https://github.com/Cyber-Machine/keras…
Cyber-Machine Feb 26, 2023
25512ab
Updated Docstring for bert_tokenizer
Cyber-Machine Feb 26, 2023
26e7beb
Updated masked_lm_generator.py
Cyber-Machine Feb 27, 2023
90e363d
fixed linting
Cyber-Machine Feb 27, 2023
9d8fbc5
Merge branch 'model_card' of https://github.com/Cyber-Machine/keras-n…
Cyber-Machine Feb 28, 2023
17e0469
Changed Boolean Variables tp Numeric
Cyber-Machine Mar 3, 2023
6af1e1e
Formatted using shell/format.sh
Cyber-Machine Mar 3, 2023
aac3d05
Updated bert_masked_lm.py
Cyber-Machine Mar 3, 2023
134e14b
typo fix
mattdangerw Mar 3, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions keras_nlp/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,10 @@
from keras_nlp.models.bart.bart_tokenizer import BartTokenizer
from keras_nlp.models.bert.bert_backbone import BertBackbone
from keras_nlp.models.bert.bert_classifier import BertClassifier
from keras_nlp.models.bert.bert_masked_lm import BertMaskedLM
from keras_nlp.models.bert.bert_masked_lm_preprocessor import (
BertMaskedLMPreprocessor,
)
from keras_nlp.models.bert.bert_preprocessor import BertPreprocessor
from keras_nlp.models.bert.bert_tokenizer import BertTokenizer
from keras_nlp.models.deberta_v3.deberta_v3_backbone import DebertaV3Backbone
Expand Down
152 changes: 152 additions & 0 deletions keras_nlp/models/bert/bert_masked_lm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,152 @@
# Copyright 2022 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT masked LM model."""

import copy

from tensorflow import keras

from keras_nlp.layers.masked_lm_head import MaskedLMHead
from keras_nlp.models.bert.bert_backbone import BertBackbone
from keras_nlp.models.bert.bert_backbone import bert_kernel_initializer
from keras_nlp.models.bert.bert_masked_lm_preprocessor import (
BertMaskedLMPreprocessor,
)
from keras_nlp.models.bert.bert_presets import backbone_presets
from keras_nlp.models.task import Task
from keras_nlp.utils.python_utils import classproperty


@keras.utils.register_keras_serializable(package="keras_nlp")
class BertMaskedLM(Task):
"""An end-to-end BERT model for the masked language modeling task.

This model will train BERT on a masked language modeling task.
The model will predict labels for a number of masked tokens in the
input data. For usage of this model with pre-trained weights, see the
`from_preset()` method.

This model can optionally be configured with a `preprocessor` layer, in
which case inputs can be raw string features during `fit()`, `predict()`,
and `evaluate()`. Inputs will be tokenized and dynamically masked during
training and evaluation. This is done by default when creating the model
with `from_preset()`.

Disclaimer: Pre-trained models are provided on an "as is" basis, without
warranties or conditions of any kind.

Args:
backbone: A `keras_nlp.models.BertBackbone` instance.
preprocessor: A `keras_nlp.models.BertMaskedLMPreprocessor` or
`None`. If `None`, this model will not apply preprocessing, and
inputs should be preprocessed before calling the model.

Example usage:

Raw string inputs and pretrained backbone.
```python
# Create a dataset with raw string features. Labels are inferred.
features = ["The quick brown fox jumped.", "I forgot my homework."]

# Create a BertMaskedLM with a pretrained backbone and further train
# on an MLM task.
masked_lm = keras_nlp.models.BertMaskedLM.from_preset(
"bert_base_en",
)
masked_lm.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
)
masked_lm.fit(x=features, batch_size=2)
```

Preprocessed inputs and custom backbone.
```python
# Create a preprocessed dataset where 0 is the mask token.
preprocessed_features = {
"token_ids": tf.constant(
[[1, 2, 0, 4, 0, 6, 7, 8]] * 2, shape=(2, 8)
),
"padding_mask": tf.constant(
[[1, 1, 1, 1, 1, 1, 1, 1]] * 2, shape=(2, 8)
),
"mask_positions": tf.constant([[2, 4]] * 2, shape=(2, 2)),
"segment_ids": tf.constant([[0, 0, 0, 0, 0, 0, 0, 0]] * 2, shape=(2, 8))
}
# Labels are the original masked values.
labels = [[3, 5]] * 2

# Randomly initialize a BERT encoder
backbone = keras_nlp.models.BertBackbone(
vocabulary_size=50265,
num_layers=12,
num_heads=12,
hidden_dim=768,
intermediate_dim=3072,
max_sequence_length=12
)
# Create a BERT masked LM model and fit the data.
masked_lm = keras_nlp.models.BertMaskedLM(
backbone,
preprocessor=None,
)
masked_lm.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
)
masked_lm.fit(x=preprocessed_features, y=labels, batch_size=2)
```
"""

def __init__(
self,
backbone,
preprocessor=None,
**kwargs,
):
inputs = {
**backbone.input,
"mask_positions": keras.Input(
shape=(None,), dtype="int32", name="mask_positions"
),
}
backbone_outputs = backbone(backbone.input)
outputs = MaskedLMHead(
vocabulary_size=backbone.vocabulary_size,
embedding_weights=backbone.token_embedding.embeddings,
intermediate_activation="gelu",
kernel_initializer=bert_kernel_initializer(),
name="mlm_head",
)(backbone_outputs["sequence_output"], inputs["mask_positions"])

# Instantiate using Functional API Model constructor
super().__init__(
inputs=inputs,
outputs=outputs,
include_preprocessing=preprocessor is not None,
**kwargs,
)
# All references to `self` below this line
self.backbone = backbone
self.preprocessor = preprocessor

@classproperty
def backbone_cls(cls):
return BertBackbone

@classproperty
def preprocessor_cls(cls):
return BertMaskedLMPreprocessor

@classproperty
def presets(cls):
return copy.deepcopy(backbone_presets)
138 changes: 138 additions & 0 deletions keras_nlp/models/bert/bert_masked_lm_preprocessor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,138 @@
# Copyright 2022 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""BERT masked language model preprocessor layer."""

from absl import logging
from tensorflow import keras

from keras_nlp.layers.masked_lm_mask_generator import MaskedLMMaskGenerator
from keras_nlp.models.bert.bert_preprocessor import BertPreprocessor
from keras_nlp.utils.keras_utils import pack_x_y_sample_weight


@keras.utils.register_keras_serializable(package="keras_nlp")
class BertMaskedLMPreprocessor(BertPreprocessor):
"""BERT preprocessing for the masked language modeling task.
This preprocessing layer will prepare inputs for a masked language modeling
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Looks like the empty newlines from the version you copied from got removed. (github does this for some reason)

Can you add them back in throughout this docstring?

task. It is primarily intended for use with the
`keras_nlp.models.BertMaskedLM` task model. Preprocessing will occur in
multiple steps.
- Tokenize any number of input segments using the `tokenizer`.
- Pack the inputs together using a `keras_nlp.layers.MultiSegmentPacker`.
with the appropriate `"[CLS]"`, `"[SEP]"`, `"[SEP]"`, `"[SEP]"` and `"[PAD]"` tokens.
- Randomly select non-special tokens to mask, controlled by
`mask_selection_rate`.
- Construct a `(x, y, sample_weight)` tuple suitable for training with a
`keras_nlp.models.BertMaskedLM` task model.
Examples:
```python
# Load the preprocessor from a preset.
preprocessor = keras_nlp.models.BertMaskedLMPreprocessor.from_preset(
"bert_base_en"
)
# Tokenize and mask a single sentence.
sentence = tf.constant("The quick brown fox jumped.")
preprocessor(sentence)
# Tokenize and mask a batch of sentences.
sentences = tf.constant(
["The quick brown fox jumped.", "Call me Ishmael."]
)
preprocessor(sentences)
# Tokenize and mask a dataset of sentences.
features = tf.constant(
["The quick brown fox jumped.", "Call me Ishmael."]
)
ds = tf.data.Dataset.from_tensor_slices((features))
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Alternatively, you can create a preprocessor from your own vocabulary.
# The usage is exactly the same as above.
vocab = ["[PAD]", "[UNK]", "[CLS]", "[SEP]", "[MASK]"]
vocab += ["THE", "QUICK", "BROWN", "FOX"]
vocab += ["Call", "me", "Ishmael"]
tokenizer = keras_nlp.models.BertTokenizer(vocabulary=vocab)
preprocessor = keras_nlp.models.BertMaskedLMPreprocessor(tokenizer)
```
"""

def __init__(
self,
tokenizer,
sequence_length=512,
truncate="round_robin",
mask_selection_rate=0.15,
mask_selection_length=96,
mask_token_rate=0.8,
random_token_rate=0.1,
**kwargs,
):
super().__init__(
tokenizer,
sequence_length=sequence_length,
truncate=truncate,
**kwargs,
)

self.masker = MaskedLMMaskGenerator(
mask_selection_rate=mask_selection_rate,
mask_selection_length=mask_selection_length,
mask_token_rate=mask_token_rate,
random_token_rate=random_token_rate,
vocabulary_size=tokenizer.vocabulary_size(),
mask_token_id=tokenizer.mask_token_id,
unselectable_token_ids=[
tokenizer.cls_token_id,
tokenizer.sep_token_id,
tokenizer.pad_token_id,
],
)

def get_config(self):
config = super().get_config()
config.update(
{
"mask_selection_rate": self.masker.mask_selection_rate,
"mask_selection_length": self.masker.mask_selection_length,
"mask_token_rate": self.masker.mask_token_rate,
"random_token_rate": self.masker.random_token_rate,
}
)
return config

def call(self, x, y=None, sample_weight=None):
if y is not None or sample_weight is not None:
logging.warning(
f"{self.__class__.__name__} generates `y` and `sample_weight` "
"based on your input data, but your data already contains `y` "
"or `sample_weight`. Your `y` and `sample_weight` will be "
"ignored."
)

x = super().call(x)

token_ids, padding_mask, segment_ids = (
x["token_ids"],
x["padding_mask"],
x["segment_ids"],
)
masker_outputs = self.masker(token_ids)
x = {
"token_ids": masker_outputs["token_ids"],
"padding_mask": padding_mask,
"segment_ids": segment_ids,
"mask_positions": masker_outputs["mask_positions"],
}
y = masker_outputs["mask_ids"]
sample_weight = masker_outputs["mask_weights"]
return pack_x_y_sample_weight(x, y, sample_weight)
Loading