Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding an AlbertMaskedLM task + Fix Projection layer dimension in MaskedLMHead #725

Merged
merged 17 commits into from
Feb 17, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion keras_nlp/layers/masked_lm_head.py
Original file line number Diff line number Diff line change
Expand Up @@ -140,7 +140,10 @@ def __init__(
self.vocabulary_size = shape[0]

def build(self, input_shapes):
feature_size = input_shapes[-1]
if self.embedding_weights is not None:
feature_size = self.embedding_weights.shape[-1]
else:
feature_size = input_shapes[-1]

self._dense = keras.layers.Dense(
feature_size,
Expand Down
12 changes: 7 additions & 5 deletions keras_nlp/layers/masked_lm_head_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,15 +46,17 @@ def test_valid_call_with_embedding_weights(self):
embedding_weights=embedding.embeddings,
activation="softmax",
)
encoded_tokens = keras.Input(shape=(10, 16))
# Use a difference "hidden dim" for the model than "embedding dim", we
# need to support this in the layer.
sequence = keras.Input(shape=(10, 32))
positions = keras.Input(shape=(5,), dtype="int32")
outputs = head(encoded_tokens, mask_positions=positions)
model = keras.Model((encoded_tokens, positions), outputs)
token_data = tf.random.uniform(shape=(4, 10, 16))
outputs = head(sequence, mask_positions=positions)
model = keras.Model((sequence, positions), outputs)
sequence_data = tf.random.uniform(shape=(4, 10, 32))
position_data = tf.random.uniform(
shape=(4, 5), maxval=10, dtype="int32"
)
model((token_data, position_data))
model((sequence_data, position_data))

def test_get_config_and_from_config(self):
head = masked_lm_head.MaskedLMHead(
Expand Down
4 changes: 4 additions & 0 deletions keras_nlp/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,10 @@
# limitations under the License.

from keras_nlp.models.albert.albert_backbone import AlbertBackbone
from keras_nlp.models.albert.albert_masked_lm import AlbertMaskedLM
from keras_nlp.models.albert.albert_masked_lm_preprocessor import (
AlbertMaskedLMPreprocessor,
)
from keras_nlp.models.albert.albert_preprocessor import AlbertPreprocessor
from keras_nlp.models.albert.albert_tokenizer import AlbertTokenizer
from keras_nlp.models.bart.bart_backbone import BartBackbone
Expand Down
3 changes: 2 additions & 1 deletion keras_nlp/models/albert/albert_classifier_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for BERT classification model."""
"""Tests for ALBERT classification model."""
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Oops good catch :)


import io
import os
Expand Down Expand Up @@ -57,6 +57,7 @@ def setUp(self):
unk_piece="<unk>",
bos_piece="[CLS]",
eos_piece="[SEP]",
user_defined_symbols="[MASK]",
)
self.proto = bytes_io.getvalue()

Expand Down
154 changes: 154 additions & 0 deletions keras_nlp/models/albert/albert_masked_lm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,154 @@
# Copyright 2023 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""ALBERT masked LM model."""

import copy

from tensorflow import keras

from keras_nlp.layers.masked_lm_head import MaskedLMHead
from keras_nlp.models.albert.albert_backbone import AlbertBackbone
from keras_nlp.models.albert.albert_backbone import albert_kernel_initializer
from keras_nlp.models.albert.albert_masked_lm_preprocessor import (
AlbertMaskedLMPreprocessor,
)
from keras_nlp.models.albert.albert_presets import backbone_presets
from keras_nlp.models.task import Task
from keras_nlp.utils.python_utils import classproperty


@keras.utils.register_keras_serializable(package="keras_nlp")
class AlbertMaskedLM(Task):
"""An end-to-end ALBERT model for the masked language modeling task.

This model will train ALBERT on a masked language modeling task.
The model will predict labels for a number of masked tokens in the
input data. For usage of this model with pre-trained weights, see the
`from_preset()` method.

This model can optionally be configured with a `preprocessor` layer, in
which case inputs can be raw string features during `fit()`, `predict()`,
and `evaluate()`. Inputs will be tokenized and dynamically masked during
training and evaluation. This is done by default when creating the model
with `from_preset()`.

Disclaimer: Pre-trained models are provided on an "as is" basis, without
warranties or conditions of any kind.

Args:
backbone: A `keras_nlp.models.AlbertBackbone` instance.
preprocessor: A `keras_nlp.models.AlbertMaskedLMPreprocessor` or
`None`. If `None`, this model will not apply preprocessing, and
inputs should be preprocessed before calling the model.

Example usage:
shivance marked this conversation as resolved.
Show resolved Hide resolved

Raw string inputs and pretrained backbone.
```python
# Create a dataset with raw string features. Labels are inferred.
features = ["The quick brown fox jumped.", "I forgot my homework."]

# Create a AlbertMaskedLM with a pretrained backbone and further train
# on an MLM task.
masked_lm = keras_nlp.models.AlbertMaskedLM.from_preset(
"albert_base_en_uncased",
)
masked_lm.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
)
masked_lm.fit(x=features, batch_size=2)
```

Preprocessed inputs and custom backbone.
```python
# Create a preprocessed dataset where 0 is the mask token.
preprocessed_features = {
"segment_ids": tf.constant(
[[1, 0, 0, 4, 0, 6, 7, 8]] * 2, shape=(2, 8)
),
"token_ids": tf.constant(
[[1, 2, 0, 4, 0, 6, 7, 8]] * 2, shape=(2, 8)
),
"padding_mask": tf.constant(
[[1, 1, 1, 1, 1, 1, 1, 1]] * 2, shape=(2, 8)
),
"mask_positions": tf.constant([[2, 4]] * 2, shape=(2, 2))
}
# Labels are the original masked values.
labels = [[3, 5]] * 2

# Randomly initialize a ALBERT encoder
backbone = keras_nlp.models.AlbertBackbone(
vocabulary_size=1000,
num_layers=2,
num_heads=2,
embedding_dim=64,
hidden_dim=64,
intermediate_dim=128,
max_sequence_length=128)

# Create a ALBERT masked LM and fit the data.
masked_lm = keras_nlp.models.AlbertMaskedLM(
backbone,
preprocessor=None,
)
masked_lm.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
jit_compile=True
)
masked_lm.fit(x=preprocessed_features, y=labels, batch_size=2)
```
"""

def __init__(self, backbone, preprocessor=None, **kwargs):
inputs = {
**backbone.input,
"mask_positions": keras.Input(
shape=(None,), dtype="int32", name="mask_positions"
),
}

backbone_outputs = backbone(backbone.input)
outputs = MaskedLMHead(
vocabulary_size=backbone.vocabulary_size,
embedding_weights=backbone.token_embedding.embeddings,
intermediate_activation=lambda x: keras.activations.gelu(
x, approximate=True
),
kernel_initializer=albert_kernel_initializer(),
name="mlm_head",
)(backbone_outputs["sequence_output"], inputs["mask_positions"])

super().__init__(
inputs=inputs,
outputs=outputs,
include_preprocessing=preprocessor is not None,
**kwargs
)

self.backbone = backbone
self.preprocessor = preprocessor

@classproperty
def backbone_cls(cls):
return AlbertBackbone

@classproperty
def preprocessor_cls(cls):
return AlbertMaskedLMPreprocessor

@classproperty
def presets(cls):
return copy.deepcopy(backbone_presets)
Loading