Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add f_net_classifier and f_net_classifier_test #670

Merged
merged 39 commits into from
Jan 25, 2023
Merged
Show file tree
Hide file tree
Changes from 30 commits
Commits
Show all changes
39 commits
Select commit Hold shift + click to select a range
ba4dd4e
add f_net_classifier and f_net_classifier_test
ADITYADAS1999 Jan 17, 2023
ba51c2a
Update f_net_classifier.py
ADITYADAS1999 Jan 17, 2023
084ce59
Update f_net_classifier.py
ADITYADAS1999 Jan 17, 2023
b7cc09d
remove spaces
ADITYADAS1999 Jan 17, 2023
fe0f6f4
Update f_net_classifier_test.py
ADITYADAS1999 Jan 18, 2023
992160d
Update f_net_classifier.py
ADITYADAS1999 Jan 18, 2023
7cd46df
Revert "Update f_net_classifier.py"
ADITYADAS1999 Jan 18, 2023
ff674c5
Revert "Update f_net_classifier_test.py"
ADITYADAS1999 Jan 18, 2023
0a746e8
remove unnecessary imports
ADITYADAS1999 Jan 18, 2023
7bcde56
add necessary imports
ADITYADAS1999 Jan 18, 2023
92699a0
Merge branch 'keras-team:master' into new_branch
ADITYADAS1999 Jan 20, 2023
cba52ff
Update f_net_classifier.py
ADITYADAS1999 Jan 20, 2023
c634ae6
Delete f_net_classifier.py
ADITYADAS1999 Jan 20, 2023
583fc00
Delete f_net_classifier_test.py
ADITYADAS1999 Jan 20, 2023
06cf94f
Add files via upload
ADITYADAS1999 Jan 20, 2023
39f2573
Update f_net_classifier_test.py
ADITYADAS1999 Jan 21, 2023
4dd5664
Update f_net_classifier_test.py
ADITYADAS1999 Jan 21, 2023
ee4c8e9
Update f_net_classifier.py
ADITYADAS1999 Jan 21, 2023
3a8fa0a
Update f_net_classifier.py
ADITYADAS1999 Jan 21, 2023
614f8df
Update f_net_classifier.py
ADITYADAS1999 Jan 21, 2023
8a39cd3
Delete f_net_classifier.py
ADITYADAS1999 Jan 21, 2023
a7c5659
Add files via upload
ADITYADAS1999 Jan 21, 2023
bf44198
Update f_net_classifier.py
ADITYADAS1999 Jan 21, 2023
5d7b45d
Update f_net_classifier.py
ADITYADAS1999 Jan 21, 2023
6e1e279
Update f_net_classifier.py
ADITYADAS1999 Jan 21, 2023
850192d
Update f_net_classifier.py
ADITYADAS1999 Jan 21, 2023
d33ca41
Update f_net_classifier.py
ADITYADAS1999 Jan 21, 2023
4844c62
Delete f_net_classifier_test.py
ADITYADAS1999 Jan 21, 2023
ec847f3
Delete f_net_classifier.py
ADITYADAS1999 Jan 22, 2023
7b6225b
Add files via upload
ADITYADAS1999 Jan 22, 2023
8d5165d
suggested changes
ADITYADAS1999 Jan 24, 2023
f159ad2
suggested changes
ADITYADAS1999 Jan 24, 2023
9cab7d2
Update f_net_presets_test.py
ADITYADAS1999 Jan 24, 2023
95db3eb
Update f_net_presets_test.py
ADITYADAS1999 Jan 24, 2023
4953fe7
Delete f_net_presets_test.py
ADITYADAS1999 Jan 24, 2023
8a6459d
Add files via upload
ADITYADAS1999 Jan 24, 2023
5ccca25
Update f_net_presets_test.py
ADITYADAS1999 Jan 24, 2023
1986080
Revert "Update f_net_presets_test.py"
ADITYADAS1999 Jan 24, 2023
9380fdd
Fix presets tests
mattdangerw Jan 24, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
145 changes: 145 additions & 0 deletions keras_nlp/models/f_net/f_net_classifier.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,145 @@
# Copyright 2022 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""FNet classification model."""

import copy

from tensorflow import keras

from keras_nlp.models.f_net.f_net_backbone import FNetBackbone
from keras_nlp.models.f_net.f_net_backbone import f_net_kernel_initializer
from keras_nlp.models.f_net.f_net_preprocessor import FNetPreprocessor
from keras_nlp.models.f_net.f_net_presets import backbone_presets
from keras_nlp.models.task import Task
from keras_nlp.utils.python_utils import classproperty


@keras.utils.register_keras_serializable(package="keras_nlp")
class FNetClassifier(Task):

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

no newline before docstring

"""An end-to-end f_net model for classification tasks.

This model attaches a classification head to a
`keras_nlp.model.FNetBackbone` model, mapping from the backbone
outputs to logit output suitable for a classification task. For usage of
this model with pre-trained weights, see the `from_preset()` method.

This model can optionally be configured with a `preprocessor` layer, in
which case it will automatically apply preprocessing to raw inputs during
`fit()`, `predict()`, and `evaluate()`. This is done by default when
creating the model with `from_preset()`.

Disclaimer: Pre-trained models are provided on an "as is" basis, without
warranties or conditions of any kind.

Args:
backbone: A `keras_nlp.models.FNetBackbone` instance.
num_classes: int. Number of classes to predict.
hidden_dim: int. The size of the pooler layer.
dropout: float. The dropout probability value, applied after the dense
layer.
preprocessor: A `keras_nlp.models.FNetPreprocessor` or `None`. If
`None`, this model will not apply preprocessing, and inputs should
be preprocessed before calling the model.

Example usage:
```python
preprocessed_features = {
"token_ids": tf.ones(shape=(2, 12), dtype=tf.int64),
"segment_ids": tf.constant(
[[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0]] * 2, shape=(2, 12)
),
"padding_mask": tf.constant(
[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2, shape=(2, 12)
),
}
labels = [0, 3]

# Randomly initialize a Fnet backbone
backbone = keras_nlp.models.FNetBackbone(
vocabulary_size=32000,
num_layers=12,
num_heads=12,
hidden_dim=768,
intermediate_dim=3072,
max_sequence_length=12,
)

# Create a Fnet classifier and fit your data.
classifier = keras_nlp.models.FnetClassifier(
backbone,
num_classes=4,
preprocessor=None,
)
classifier.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
)
classifier.fit(x=preprocessed_features, y=labels, batch_size=2)

# Access backbone programatically (e.g., to change `trainable`)
classifier.backbone.trainable = False
```
"""

def __init__(
self,
backbone,
num_classes=2,
dropout=0.1,
preprocessor=None,
**kwargs,
):
inputs = backbone.input
pooled = backbone(inputs)["pooled_output"]
pooled = keras.layers.Dropout(dropout)(pooled)
outputs = keras.layers.Dense(
num_classes,
kernel_initializer=f_net_kernel_initializer(),
name="logits",
)(pooled)
# Instantiate using Functional API Model constructor
super().__init__(
inputs=inputs,
outputs=outputs,
include_preprocessing=preprocessor is not None,
**kwargs,
)
# All references to `self` below this line
self._backbone = backbone
self._preprocessor = preprocessor
self.num_classes = num_classes
self.dropout = dropout

def get_config(self):
config = super().get_config()
config.update(
{
"num_classes": self.num_classes,
"dropout": self.dropout,
}
)
return config

@classproperty
def backbone_cls(cls):
return FNetBackbone

@classproperty
def preprocessor_cls(cls):
return FNetPreprocessor

@classproperty
def presets(cls):
return copy.deepcopy(backbone_presets)
145 changes: 145 additions & 0 deletions keras_nlp/models/f_net/f_net_classifier_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,145 @@
# Copyright 2023 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for FNET classification model."""
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

FNET -> FNet (even the paper authors do not style this all caps)


import io
import os

import sentencepiece
import tensorflow as tf
from absl.testing import parameterized
from tensorflow import keras

from keras_nlp.models.f_net.f_net_backbone import FNetBackbone
from keras_nlp.models.f_net.f_net_classifier import FNetClassifier
from keras_nlp.models.f_net.f_net_preprocessor import FNetPreprocessor
from keras_nlp.models.f_net.f_net_tokenizer import FNetTokenizer


class FNetClassifierTest(tf.test.TestCase, parameterized.TestCase):
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You will also need to add some preset tests in f_net_presets_tests.py, you can take a look at #668, which is doing a similar thing for AlBERT.

def setUp(self):
self.backbone = FNetBackbone(
vocabulary_size=1000,
num_layers=2,
hidden_dim=64,
intermediate_dim=128,
max_sequence_length=128,
name="encoder",
)

bytes_io = io.BytesIO()
vocab_data = tf.data.Dataset.from_tensor_slices(
["the quick brown fox", "the earth is round"]
)

sentencepiece.SentencePieceTrainer.train(
sentence_iterator=vocab_data.as_numpy_iterator(),
model_writer=bytes_io,
vocab_size=10,
model_type="WORD",
pad_id=3,
unk_id=0,
bos_id=4,
eos_id=5,
pad_piece="<pad>",
unk_piece="<unk>",
bos_piece="[CLS]",
eos_piece="[SEP]",
)

self.proto = bytes_io.getvalue()

self.preprocessor = FNetPreprocessor(
tokenizer=FNetTokenizer(proto=self.proto),
sequence_length=12,
)

self.classifier = FNetClassifier(
self.backbone,
4,
preprocessor=self.preprocessor,
)
self.classifier_no_preprocessing = FNetClassifier(
self.backbone,
4,
preprocessor=None,
)

self.raw_batch = tf.constant(
[
"the quick brown fox.",
"the slow brown fox.",
"the smelly brown fox.",
"the old brown fox.",
]
)
self.preprocessed_batch = self.preprocessor(self.raw_batch)
self.raw_dataset = tf.data.Dataset.from_tensor_slices(
(self.raw_batch, tf.ones((4,)))
).batch(2)
self.preprocessed_dataset = self.raw_dataset.map(self.preprocessor)

def test_valid_call_classifier(self):
self.classifier(self.preprocessed_batch)

@parameterized.named_parameters(
("jit_compile_false", False), ("jit_compile_true", True)
)
def test_fnet_classifier_predict(self, jit_compile):
self.classifier.compile(jit_compile=jit_compile)
self.classifier.predict(self.raw_batch)

@parameterized.named_parameters(
("jit_compile_false", False), ("jit_compile_true", True)
)
def test_fnet_classifier_predict_no_preprocessing(self, jit_compile):
self.classifier_no_preprocessing.compile(jit_compile=jit_compile)
self.classifier_no_preprocessing.predict(self.preprocessed_batch)

@parameterized.named_parameters(
("jit_compile_false", False), ("jit_compile_true", True)
)
def test_fnet_classifier_fit(self, jit_compile):
self.classifier.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
jit_compile=jit_compile,
)
self.classifier.fit(self.raw_dataset)

@parameterized.named_parameters(
("jit_compile_false", False), ("jit_compile_true", True)
)
def test_fnet_classifier_fit_no_preprocessing(self, jit_compile):
self.classifier_no_preprocessing.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
jit_compile=jit_compile,
)
self.classifier_no_preprocessing.fit(self.preprocessed_dataset)

@parameterized.named_parameters(
("tf_format", "tf", "model"),
("keras_format", "keras_v3", "model.keras"),
)
def test_saved_model(self, save_format, filename):
model_output = self.classifier.predict(self.raw_batch)
save_path = os.path.join(self.get_temp_dir(), filename)
self.classifier.save(save_path, save_format=save_format)
restored_model = keras.models.load_model(save_path)

# Check we got the real object back.
self.assertIsInstance(restored_model, FNetClassifier)

# Check that output matches.
restored_output = restored_model.predict(self.raw_batch)
self.assertAllClose(model_output, restored_output)