Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Base Preprocessor Class #638

Merged
merged 18 commits into from
Jan 9, 2023
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
Add AlbertBackbone
  • Loading branch information
abheesht17 committed Dec 29, 2022
commit 9466b88f5f6525a70d24320fe94df0aaedca8ef9
1 change: 1 addition & 0 deletions keras_nlp/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.

from keras_nlp.models.albert.albert_backbone import AlbertBackbone
from keras_nlp.models.bert.bert_backbone import BertBackbone
from keras_nlp.models.bert.bert_classifier import BertClassifier
from keras_nlp.models.bert.bert_preprocessor import BertPreprocessor
Expand Down
13 changes: 13 additions & 0 deletions keras_nlp/models/albert/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# Copyright 2022 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
248 changes: 248 additions & 0 deletions keras_nlp/models/albert/albert_backbone.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,248 @@
# Copyright 2022 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""ALBERT backbone model."""

import tensorflow as tf
from tensorflow import keras

from keras_nlp.layers.position_embedding import PositionEmbedding
from keras_nlp.models.albert.albert_group_layer import AlbertGroupLayer
from keras_nlp.utils.python_utils import classproperty


def albert_kernel_initializer(stddev=0.02):
return keras.initializers.TruncatedNormal(stddev=stddev)


@keras.utils.register_keras_serializable(package="keras_nlp")
class AlbertBackbone(keras.Model):
"""ALBERT encoder network.

This class implements a bi-directional Transformer-based encoder as
described in
["ALBERT: A Lite BERT for Self-supervised Learning of Language Representations"](https://arxiv.org/abs/1909.11942).
It includes the embedding lookups and transformer layers, but not the masked
language model or next sentence prediction heads.

The default constructor gives a fully customizable, randomly initialized
ALBERT encoder with any number of layers, heads, and embedding dimensions.
To load preset architectures and weights, use the `from_preset` constructor.

Disclaimer: Pre-trained models are provided on an "as is" basis, without
warranties or conditions of any kind.

Args:
vocabulary_size: int. The size of the token vocabulary.
num_layers: int. The number of transformer layers.
num_heads: int. The number of attention heads for each transformer.
The hidden size must be divisible by the number of attention heads.
hidden_dim: int. The size of the transformer encoding and pooler layers.
intermediate_dim: int. The output dimension of the first Dense layer in
a two-layer feedforward network for each transformer.
dropout: float. Dropout probability for the Transformer encoder.
max_sequence_length: int. The maximum sequence length that this encoder
can consume. If None, `max_sequence_length` uses the value from
sequence length. This determines the variable shape for positional
embeddings.
num_segments: int. The number of types that the 'segment_ids' input can
take.

Examples:
```python
input_data = {
"token_ids": tf.ones(shape=(1, 12), dtype=tf.int64),
"segment_ids": tf.constant(
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0], shape=(1, 12)
),
"padding_mask": tf.constant(
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], shape=(1, 12)
),
}

# Randomly initialized ALBERT encoder
model = keras_nlp.models.AlbertBackbone(
vocabulary_size=30552,
num_layers=12,
num_heads=12,
hidden_dim=768,
intermediate_dim=3072,
max_sequence_length=12,
)
output = model(input_data)
```
"""

def __init__(
self,
vocabulary_size,
num_layers,
num_heads,
num_hidden_groups,
num_layers_per_group,
embedding_dim,
hidden_dim,
intermediate_dim,
dropout=0.0,
max_sequence_length=512,
num_segments=2,
**kwargs,
):

# Index of classification token in the vocabulary
cls_token_index = 0
# Inputs
token_id_input = keras.Input(
shape=(None,), dtype="int32", name="token_ids"
)
segment_id_input = keras.Input(
shape=(None,), dtype="int32", name="segment_ids"
)
padding_mask = keras.Input(
shape=(None,), dtype="int32", name="padding_mask"
)

# Embed tokens, positions, and segment ids.
token_embedding_layer = keras.layers.Embedding(
input_dim=vocabulary_size,
output_dim=embedding_dim,
embeddings_initializer=albert_kernel_initializer(),
name="token_embedding",
)
token_embedding = token_embedding_layer(token_id_input)
position_embedding = PositionEmbedding(
initializer=albert_kernel_initializer(),
sequence_length=max_sequence_length,
name="position_embedding",
)(token_embedding)
segment_embedding = keras.layers.Embedding(
input_dim=num_segments,
output_dim=embedding_dim,
embeddings_initializer=albert_kernel_initializer(),
name="segment_embedding",
)(segment_id_input)

# Sum, normalize and apply dropout to embeddings.
x = keras.layers.Add()(
(token_embedding, position_embedding, segment_embedding)
)
x = keras.layers.LayerNormalization(
name="embeddings_layer_norm",
axis=-1,
epsilon=1e-12,
dtype=tf.float32,
)(x)
x = keras.layers.Dropout(
dropout,
name="embeddings_dropout",
)(x)

# Project the embedding to `hidden_dim`.
x = keras.layers.Dense(
hidden_dim,
kernel_initializer=albert_kernel_initializer(),
name="embedding_projection",
)(x)

albert_group_layers = [
AlbertGroupLayer(
num_layers=num_layers_per_group,
num_heads=num_heads,
intermediate_dim=intermediate_dim,
activation=lambda x: keras.activations.gelu(
x, approximate=True
),
dropout=dropout,
kernel_initializer=albert_kernel_initializer(),
name=f"group_layer_{i}",
)
for i in range(num_hidden_groups)
]

# Apply successive transformer encoder blocks.
for i in range(num_layers):
# Index of the hidden group
group_idx = int(i / (num_layers / num_hidden_groups))
x = albert_group_layers[group_idx](x, padding_mask)

# Construct the two ALBERT outputs. The pooled output is a dense layer on
# top of the [CLS] token.
sequence_output = x
pooled_output = keras.layers.Dense(
hidden_dim,
kernel_initializer=albert_kernel_initializer(),
activation="tanh",
name="pooled_dense",
)(x[:, cls_token_index, :])

# Instantiate using Functional API Model constructor
super().__init__(
inputs={
"token_ids": token_id_input,
"segment_ids": segment_id_input,
"padding_mask": padding_mask,
},
outputs={
"sequence_output": sequence_output,
"pooled_output": pooled_output,
},
**kwargs,
)
# All references to `self` below this line
self.vocabulary_size = vocabulary_size
self.num_layers = num_layers
self.num_heads = num_heads
self.num_hidden_groups = num_hidden_groups
self.num_layers_per_group = num_layers_per_group
self.embedding_dim = embedding_dim
self.hidden_dim = hidden_dim
self.intermediate_dim = intermediate_dim
self.dropout = dropout
self.max_sequence_length = max_sequence_length
self.num_segments = num_segments
self.cls_token_index = cls_token_index

def get_config(self):
return {
"vocabulary_size": self.vocabulary_size,
"num_layers": self.num_layers,
"num_heads": self.num_heads,
"num_hidden_groups": self.num_hidden_groups,
"num_layers_per_group": self.num_layers_per_group,
"embedding_dim": self.embedding_dim,
"hidden_dim": self.hidden_dim,
"intermediate_dim": self.intermediate_dim,
"dropout": self.dropout,
"max_sequence_length": self.max_sequence_length,
"num_segments": self.num_segments,
"name": self.name,
"trainable": self.trainable,
}

@classmethod
def from_config(cls, config):
return cls(**config)

@classproperty
def presets(cls):
return {}

@classmethod
def from_preset(
cls,
preset,
load_weights=True,
**kwargs,
):
raise NotImplementedError
73 changes: 73 additions & 0 deletions keras_nlp/models/albert/albert_group_layer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
# Copyright 2022 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from tensorflow import keras

from keras_nlp.layers.transformer_encoder import TransformerEncoder


class AlbertGroupLayer(keras.layers.Layer):
def __init__(
self,
num_layers,
num_heads,
intermediate_dim,
activation,
dropout,
kernel_initializer,
name,
**kwargs,
):
super().__init__(name=name, **kwargs)

self.num_layers = num_layers
self.num_heads = num_heads
self.intermediate_dim = intermediate_dim
self.activation = keras.activations.get(activation)
self.dropout = dropout
self.kernel_initializer = keras.initializers.get(kernel_initializer)

# Define Transformer blocks.
self.transformer_layers = [
TransformerEncoder(
num_heads=num_heads,
intermediate_dim=intermediate_dim,
activation=activation,
dropout=dropout,
kernel_initializer=kernel_initializer,
name=f"transformer_layer_{i}",
)
for i in range(num_layers)
]

def call(self, inputs, padding_mask):
x = inputs
for transformer_layer in self.transformer_layers:
x = transformer_layer(x, padding_mask=padding_mask)
return x

def get_config(self):
config = super().get_config()
config.update(
{
"num_layers": self.num_layers,
"num_heads": self.num_heads,
"intermediate_dim": self.intermediate_dim,
"activation": keras.activations.serialize(self.activation),
"dropout": self.dropout,
"kernel_initializer": keras.initializers.serialize(
self.kernel_initializer
),
}
)
return config