Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add DeBERTaV3 Conversion Script #633

Merged
merged 2 commits into from
Jan 5, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
326 changes: 326 additions & 0 deletions tools/checkpoint_conversion/convert_deberta_v3_checkpoints.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,326 @@
# Copyright 2022 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os

import numpy as np
import requests
import tensorflow as tf
import transformers
from absl import app
from absl import flags

from keras_nlp.models.deberta_v3.deberta_v3_backbone import DebertaV3Backbone
from keras_nlp.models.deberta_v3.deberta_v3_preprocessor import (
DebertaV3Preprocessor,
)
from keras_nlp.models.deberta_v3.deberta_v3_tokenizer import DebertaV3Tokenizer
from tools.checkpoint_conversion.checkpoint_conversion_utils import (
get_md5_checksum,
)

PRESET_MAP = {
"deberta_v3_extra_small_en": "microsoft/deberta-v3-xsmall",
"deberta_v3_small_en": "microsoft/deberta-v3-small",
"deberta_v3_base_en": "microsoft/deberta-v3-base",
"deberta_v3_large_en": "microsoft/deberta-v3-large",
"deberta_v3_base_multi": "microsoft/mdeberta-v3-base",
}

EXTRACT_DIR = "./{}"

FLAGS = flags.FLAGS
flags.DEFINE_string(
"preset", None, f'Must be one of {",".join(PRESET_MAP.keys())}'
)


def download_files(preset, hf_model_name):
print("-> Download original vocabulary and config.")

extract_dir = EXTRACT_DIR.format(preset)
if not os.path.exists(extract_dir):
os.makedirs(extract_dir)

# Config.
config_path = os.path.join(extract_dir, "config.json")
response = requests.get(
f"https://huggingface.co/{hf_model_name}/raw/main/config.json"
)
open(config_path, "wb").write(response.content)
print(f"`{config_path}`")

# Vocab.
spm_path = os.path.join(extract_dir, "spm.model")
response = requests.get(
f"https://huggingface.co/{hf_model_name}/resolve/main/spm.model"
)
open(spm_path, "wb").write(response.content)
print(f"`{spm_path}`")


def define_preprocessor(preset, hf_model_name):
print("\n-> Define the tokenizers.")
extract_dir = EXTRACT_DIR.format(preset)
spm_path = os.path.join(extract_dir, "spm.model")

keras_nlp_tokenizer = DebertaV3Tokenizer(proto=spm_path)

# Avoid having padding tokens. This is because the representations of the
# padding token may be vastly different from the representations computed in
# the original model. See https://github.com/keras-team/keras/pull/16619#issuecomment-1156338394.
sequence_length = 14
if preset == "deberta_v3_base_multi":
sequence_length = 17
keras_nlp_preprocessor = DebertaV3Preprocessor(
keras_nlp_tokenizer, sequence_length=sequence_length
)

hf_tokenizer = transformers.AutoTokenizer.from_pretrained(hf_model_name)

print("\n-> Print MD5 checksum of the vocab files.")
print(f"`{spm_path}` md5sum: ", get_md5_checksum(spm_path))

return keras_nlp_preprocessor, hf_tokenizer


def convert_checkpoints(preset, keras_nlp_model, hf_model):
print("\n-> Convert original weights to KerasNLP format.")

extract_dir = EXTRACT_DIR.format(preset)
config_path = os.path.join(extract_dir, "config.json")

# Build config.
cfg = {}
with open(config_path, "r") as pt_cfg_handler:
pt_cfg = json.load(pt_cfg_handler)
cfg["vocabulary_size"] = pt_cfg["vocab_size"]
cfg["num_layers"] = pt_cfg["num_hidden_layers"]
cfg["num_heads"] = pt_cfg["num_attention_heads"]
cfg["hidden_dim"] = pt_cfg["hidden_size"]
cfg["intermediate_dim"] = pt_cfg["intermediate_size"]
cfg["dropout"] = pt_cfg["hidden_dropout_prob"]
cfg["max_sequence_length"] = pt_cfg["max_position_embeddings"]
cfg["bucket_size"] = pt_cfg["position_buckets"]
print("Config:", cfg)

hf_wts = hf_model.state_dict()
print("Original weights:")
print(
str(hf_wts.keys())
.replace(", ", "\n")
.replace("odict_keys([", "")
.replace("]", "")
.replace(")", "")
)

keras_nlp_model.get_layer("token_embedding").embeddings.assign(
hf_wts["embeddings.word_embeddings.weight"]
)
keras_nlp_model.get_layer("embeddings_layer_norm").gamma.assign(
hf_wts["embeddings.LayerNorm.weight"]
)
keras_nlp_model.get_layer("embeddings_layer_norm").beta.assign(
hf_wts["embeddings.LayerNorm.bias"]
)
keras_nlp_model.get_layer("rel_embedding").rel_embeddings.assign(
hf_wts["encoder.rel_embeddings.weight"]
)
keras_nlp_model.get_layer("rel_embedding").layer_norm.gamma.assign(
hf_wts["encoder.LayerNorm.weight"]
)
keras_nlp_model.get_layer("rel_embedding").layer_norm.beta.assign(
hf_wts["encoder.LayerNorm.bias"]
)

for i in range(keras_nlp_model.num_layers):
# Q,K,V
keras_nlp_model.get_layer(
f"disentangled_attention_encoder_layer_{i}"
)._self_attention_layer._query_dense.kernel.assign(
hf_wts[f"encoder.layer.{i}.attention.self.query_proj.weight"]
.numpy()
.T.reshape((cfg["hidden_dim"], cfg["num_heads"], -1))
)
keras_nlp_model.get_layer(
f"disentangled_attention_encoder_layer_{i}"
)._self_attention_layer._query_dense.bias.assign(
hf_wts[f"encoder.layer.{i}.attention.self.query_proj.bias"]
.reshape((cfg["num_heads"], -1))
.numpy()
)

keras_nlp_model.get_layer(
f"disentangled_attention_encoder_layer_{i}"
)._self_attention_layer._key_dense.kernel.assign(
hf_wts[f"encoder.layer.{i}.attention.self.key_proj.weight"]
.numpy()
.T.reshape((cfg["hidden_dim"], cfg["num_heads"], -1))
)
keras_nlp_model.get_layer(
f"disentangled_attention_encoder_layer_{i}"
)._self_attention_layer._key_dense.bias.assign(
hf_wts[f"encoder.layer.{i}.attention.self.key_proj.bias"]
.reshape((cfg["num_heads"], -1))
.numpy()
)

keras_nlp_model.get_layer(
f"disentangled_attention_encoder_layer_{i}"
)._self_attention_layer._value_dense.kernel.assign(
hf_wts[f"encoder.layer.{i}.attention.self.value_proj.weight"]
.numpy()
.T.reshape((cfg["hidden_dim"], cfg["num_heads"], -1))
)
keras_nlp_model.get_layer(
f"disentangled_attention_encoder_layer_{i}"
)._self_attention_layer._value_dense.bias.assign(
hf_wts[f"encoder.layer.{i}.attention.self.value_proj.bias"]
.reshape((cfg["num_heads"], -1))
.numpy()
)

# Attn output.
keras_nlp_model.get_layer(
f"disentangled_attention_encoder_layer_{i}"
)._self_attention_layer._output_dense.kernel.assign(
hf_wts[f"encoder.layer.{i}.attention.output.dense.weight"]
.transpose(1, 0)
.numpy()
)
keras_nlp_model.get_layer(
f"disentangled_attention_encoder_layer_{i}"
)._self_attention_layer._output_dense.bias.assign(
hf_wts[f"encoder.layer.{i}.attention.output.dense.bias"].numpy()
)

keras_nlp_model.get_layer(
f"disentangled_attention_encoder_layer_{i}"
)._self_attention_layernorm.gamma.assign(
hf_wts[
f"encoder.layer.{i}.attention.output.LayerNorm.weight"
].numpy()
)
keras_nlp_model.get_layer(
f"disentangled_attention_encoder_layer_{i}"
)._self_attention_layernorm.beta.assign(
hf_wts[f"encoder.layer.{i}.attention.output.LayerNorm.bias"].numpy()
)

# Intermediate FF layer.
keras_nlp_model.get_layer(
f"disentangled_attention_encoder_layer_{i}"
)._feedforward_intermediate_dense.kernel.assign(
hf_wts[f"encoder.layer.{i}.intermediate.dense.weight"]
.transpose(1, 0)
.numpy()
)
keras_nlp_model.get_layer(
f"disentangled_attention_encoder_layer_{i}"
)._feedforward_intermediate_dense.bias.assign(
hf_wts[f"encoder.layer.{i}.intermediate.dense.bias"].numpy()
)

# Output FF layer.
keras_nlp_model.get_layer(
f"disentangled_attention_encoder_layer_{i}"
)._feedforward_output_dense.kernel.assign(
hf_wts[f"encoder.layer.{i}.output.dense.weight"].numpy().T
)
keras_nlp_model.get_layer(
f"disentangled_attention_encoder_layer_{i}"
)._feedforward_output_dense.bias.assign(
hf_wts[f"encoder.layer.{i}.output.dense.bias"].numpy()
)

keras_nlp_model.get_layer(
f"disentangled_attention_encoder_layer_{i}"
)._feedforward_layernorm.gamma.assign(
hf_wts[f"encoder.layer.{i}.output.LayerNorm.weight"].numpy()
)
keras_nlp_model.get_layer(
f"disentangled_attention_encoder_layer_{i}"
)._feedforward_layernorm.beta.assign(
hf_wts[f"encoder.layer.{i}.output.LayerNorm.bias"].numpy()
)

# Save the model.
print(f"\n-> Save KerasNLP model weights to `{preset}.h5`.")
keras_nlp_model.save_weights(f"{preset}.h5")

return keras_nlp_model


def check_output(
preset,
keras_nlp_preprocessor,
keras_nlp_model,
hf_tokenizer,
hf_model,
):
print("\n-> Check the outputs.")
sample_text = ["cricket is awesome, easily the best sport in the world!"]

# KerasNLP
keras_nlp_inputs = keras_nlp_preprocessor(tf.constant(sample_text))
keras_nlp_output = keras_nlp_model.predict(keras_nlp_inputs)

# HF
hf_inputs = hf_tokenizer(
sample_text, padding="longest", return_tensors="pt"
)
hf_output = hf_model(**hf_inputs).last_hidden_state

print("KerasNLP output:", keras_nlp_output[0, 0, :10])
print("HF output:", hf_output[0, 0, :10])
print("Difference:", np.mean(keras_nlp_output - hf_output.detach().numpy()))

# Show the MD5 checksum of the model weights.
print("Model md5sum: ", get_md5_checksum(f"./{preset}.h5"))


def main(_):
hf_model_name = PRESET_MAP[FLAGS.preset]

download_files(FLAGS.preset, hf_model_name)

keras_nlp_preprocessor, hf_tokenizer = define_preprocessor(
FLAGS.preset, hf_model_name
)

print("\n-> Load KerasNLP model.")
keras_nlp_model = DebertaV3Backbone.from_preset(
FLAGS.preset, load_weights=False
)

print("\n-> Load HF model.")
hf_model = transformers.AutoModel.from_pretrained(hf_model_name)
hf_model.eval()

keras_nlp_model = convert_checkpoints(
FLAGS.preset, keras_nlp_model, hf_model
)

check_output(
FLAGS.preset,
keras_nlp_preprocessor,
keras_nlp_model,
hf_tokenizer,
hf_model,
)


if __name__ == "__main__":
flags.mark_flag_as_required("preset")
app.run(main)