Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add TPU support to BERT example #207

Merged
merged 6 commits into from
May 27, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
70 changes: 39 additions & 31 deletions examples/bert/bert_train.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,6 @@
"Skip restoring from checkpoint if True",
)


flags.DEFINE_string(
"model_size",
"tiny",
Expand Down Expand Up @@ -386,6 +385,16 @@ def main(_):

model_config = MODEL_CONFIGS[FLAGS.model_size]

if tf.config.list_logical_devices("TPU"):
# Connect to TPU and create TPU strategy.
resolver = tf.distribute.cluster_resolver.TPUClusterResolver.connect(
tpu="local"
)
strategy = tf.distribute.TPUStrategy(resolver)
else:
# Use default strategy if not using TPU.
strategy = tf.distribute.get_strategy()

# Decode and batch data.
dataset = tf.data.TFRecordDataset(input_filenames)
dataset = dataset.map(
Expand All @@ -395,33 +404,39 @@ def main(_):
dataset = dataset.batch(TRAINING_CONFIG["batch_size"], drop_remainder=True)
dataset = dataset.repeat()

# Create a BERT model the input config.
model = BertModel(
vocab_size=len(vocab),
**model_config,
)
# Make sure model has been called.
model(model.inputs)
model.summary()
with strategy.scope():
# Create a BERT model the input config.
model = BertModel(
vocab_size=len(vocab),
**model_config,
)
# Make sure model has been called.
model(model.inputs)
model.summary()

# Allow overriding train steps from the command line for quick testing.
if FLAGS.num_train_steps is not None:
num_train_steps = FLAGS.num_train_steps
else:
num_train_steps = TRAINING_CONFIG["num_train_steps"]
num_warmup_steps = int(
num_train_steps * TRAINING_CONFIG["warmup_percentage"]
)
learning_rate_schedule = LinearDecayWithWarmup(
learning_rate=TRAINING_CONFIG["learning_rate"],
num_warmup_steps=num_warmup_steps,
num_train_steps=num_train_steps,
)
optimizer = keras.optimizers.Adam(learning_rate=learning_rate_schedule)

pretraining_model = BertPretrainer(model)
pretraining_model.compile(
optimizer=optimizer,
)

# Allow overriding train steps from the command line for quick testing.
if FLAGS.num_train_steps is not None:
num_train_steps = FLAGS.num_train_steps
else:
num_train_steps = TRAINING_CONFIG["num_train_steps"]
num_warmup_steps = int(
num_train_steps * TRAINING_CONFIG["warmup_percentage"]
)
epochs = TRAINING_CONFIG["epochs"]
steps_per_epoch = num_train_steps // epochs

learning_rate_schedule = LinearDecayWithWarmup(
learning_rate=TRAINING_CONFIG["learning_rate"],
num_warmup_steps=num_warmup_steps,
num_train_steps=num_train_steps,
)
optimizer = keras.optimizers.Adam(learning_rate=learning_rate_schedule)

callbacks = []
if FLAGS.checkpoint_save_directory is not None:
if os.path.exists(FLAGS.checkpoint_save_directory):
Expand All @@ -440,13 +455,6 @@ def main(_):
tf.keras.callbacks.BackupAndRestore(backup_dir=checkpoint_path)
)

# Wrap with pretraining heads and call fit.
pretraining_model = BertPretrainer(model)
pretraining_model.compile(
optimizer=optimizer,
)

# TODO(mattdangerw): Add TPU strategy support.
pretraining_model.fit(
dataset,
epochs=epochs,
Expand Down