Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Clean up and add our gemma conversion script #1493

Merged
merged 4 commits into from
Mar 11, 2024
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
192 changes: 192 additions & 0 deletions tools/checkpoint_conversion/convert_gemma_checkpoints.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,192 @@
# Copyright 2023 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

os.environ["KERAS_BACKEND"] = "jax"
# No GPU for conversion, makes memory management easier.
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

import kagglehub # noqa: E402
import numpy as np # noqa: E402
import sentencepiece # noqa: E402
from absl import app # noqa: E402
from absl import flags # noqa: E402
from gemma import params as params_lib # noqa: E402
from gemma import sampler as sampler_lib # noqa: E402
from gemma import transformer as transformer_lib # noqa: E402

import keras_nlp # noqa: E402

FLAGS = flags.FLAGS

PRESET_MAP = {
"gemma_2b_en": "google/gemma/flax/2b",
"gemma_7b_en": "google/gemma/flax/7b",
"gemma_instruct_2b_en": "google/gemma/flax/2b-it",
"gemma_instruct_7b_en": "google/gemma/flax/7b-it",
}


flags.DEFINE_string(
"preset", None, f'Must be one of {",".join(PRESET_MAP.keys())}'
)
flags.mark_flag_as_required("preset")
mattdangerw marked this conversation as resolved.
Show resolved Hide resolved


def download_flax_model(handle):
return kagglehub.model_download(handle)


def convert_model(flax_config, vocab_size):
return keras_nlp.models.GemmaBackbone(
vocabulary_size=vocab_size,
num_layers=flax_config.num_layers,
num_query_heads=flax_config.num_heads,
num_key_value_heads=flax_config.num_kv_heads,
hidden_dim=flax_config.embed_dim,
intermediate_dim=flax_config.hidden_dim * 2,
head_dim=flax_config.head_dim,
)


def convert_tokenizer(proto_path):
return keras_nlp.models.GemmaTokenizer(proto=proto_path)


def convert_weights(keras_model, flax_config, flax_params):
# Chomp the embedding weights. Upstream pads for TPU efficiency, but this
# leads to weird gotchas (you need to disregard part of your output logits).
embeddings = flax_params["transformer"]["embedder"]["input_embedding"]
embeddings = np.asarray(embeddings[: keras_model.vocabulary_size, :])
keras_model.get_layer("token_embedding").set_weights([embeddings])
keras_model.get_layer("final_normalization").set_weights(
[np.asarray(flax_params["transformer"]["final_norm"]["scale"])]
)
for i in range(flax_config.num_layers):
flax_layer_name = f"layer_{i}"
keras_block = keras_model.get_layer(f"decoder_block_{i}")

flax_block = flax_params["transformer"][flax_layer_name]
keras_block.pre_attention_norm.set_weights(
[flax_block["pre_attention_norm"]["scale"]]
)
keras_block.pre_ffw_norm.set_weights(
[flax_block["pre_ffw_norm"]["scale"]]
)

keras_block.gating_ffw.set_weights(
[flax_block["mlp"]["gating_einsum"][0]]
)
keras_block.gating_ffw_2.set_weights(
[flax_block["mlp"]["gating_einsum"][1]]
)
keras_block.ffw_linear.set_weights([flax_block["mlp"]["linear"]])

attn_block = flax_block["attn"]
keras_block.attention.query_dense.kernel.assign(
np.asarray(attn_block["q_einsum"]["w"][:, :, :])
mattdangerw marked this conversation as resolved.
Show resolved Hide resolved
)
keras_block.attention.key_dense.kernel.assign(
np.asarray(attn_block["kv_einsum"]["w"][0, :, :, :])
)
keras_block.attention.value_dense.kernel.assign(
np.asarray(attn_block["kv_einsum"]["w"][1, :, :, :])
)
keras_block.attention.output_dense.kernel.assign(
flax_block["attn"]["attn_vec_einsum"]["w"]
)


def validate_output(
keras_model,
keras_tokenizer,
flax_params,
flax_tokenizer,
):
input_str = "What is Keras?"
length = 32

# KerasNLP
preprocessor = keras_nlp.models.GemmaCausalLMPreprocessor(keras_tokenizer)
gemma_lm = keras_nlp.models.GemmaCausalLM(
backbone=keras_model,
preprocessor=preprocessor,
)
keras_output = gemma_lm.generate([input_str], max_length=length)
keras_output = keras_output[0]

# Flax
transformer_config = transformer_lib.TransformerConfig.from_params(
flax_params,
cache_size=length,
)
transformer = transformer_lib.Transformer(transformer_config)
sampler = sampler_lib.Sampler(
transformer=transformer,
vocab=flax_tokenizer,
params=flax_params["transformer"],
)
flax_output = sampler(
input_strings=[input_str],
total_generation_steps=length - 5, # Length of "<bos>What is Keras?"
)
flax_output = input_str + flax_output.text[0]

# Comparing the outputs.
print("🔶 KerasNLP output:", keras_output)
print("🔶 Flax output:", flax_output)


def main(_):
preset = FLAGS.preset

assert (
preset in PRESET_MAP.keys()
), f'Invalid preset {preset}. Must be one of {",".join(PRESET_MAP.keys())}'

print(f"🏃 Coverting {preset}")

handle = PRESET_MAP[preset]
flax_dir = download_flax_model(handle)
proto_path = flax_dir + "/tokenizer.model"
print("✅ Flax model downloaded from kaggle")

variant = handle.split("/")[-1]
flax_tokenier = sentencepiece.SentencePieceProcessor()
flax_tokenier.Load(proto_path)
flax_params = params_lib.load_and_format_params(flax_dir + "/" + variant)
flax_config = transformer_lib.TransformerConfig.from_params(flax_params)
print("✅ Flax model loaded")

keras_tokenizer = convert_tokenizer(proto_path)
vocab_size = keras_tokenizer.vocabulary_size()
keras_model = convert_model(flax_config, vocab_size)
print("✅ Keras model loaded")

convert_weights(keras_model, flax_config, flax_params)
print("✅ Weights converted")

validate_output(keras_model, keras_tokenizer, flax_params, flax_tokenier)
print("✅ Output validated")

keras_nlp.src.utils.preset_utils.save_to_preset(keras_model, preset)
keras_nlp.src.utils.preset_utils.save_to_preset(
keras_tokenizer, preset, config_filename="tokenizer.json"
)
print(f"🏁 Preset saved to ./{preset}")


if __name__ == "__main__":
app.run(main)
Loading