Skip to content

Commit

Permalink
RobertaMaskedLM task and preprocessor (#653)
Browse files Browse the repository at this point in the history
* Add a RoBERTa masked langauge model task

* Address comments

* Fix test

* Another test fix

* Allow more fine-grained masking; no seeds during tests

This adds the underlying options for how masks are generated from
the mask generator layer. This is turn allows us to write some tests
for the preprocessor that are fully deterministic, while still testing
the logic in the preprocessor layer itself.

* fix self references
  • Loading branch information
mattdangerw authored Feb 1, 2023
1 parent 00fe9a1 commit 9a9be88
Show file tree
Hide file tree
Showing 12 changed files with 880 additions and 171 deletions.
4 changes: 4 additions & 0 deletions keras_nlp/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,10 @@
from keras_nlp.models.gpt2.gpt2_tokenizer import GPT2Tokenizer
from keras_nlp.models.roberta.roberta_backbone import RobertaBackbone
from keras_nlp.models.roberta.roberta_classifier import RobertaClassifier
from keras_nlp.models.roberta.roberta_masked_lm import RobertaMaskedLM
from keras_nlp.models.roberta.roberta_masked_lm_preprocessor import (
RobertaMaskedLMPreprocessor,
)
from keras_nlp.models.roberta.roberta_preprocessor import RobertaPreprocessor
from keras_nlp.models.roberta.roberta_tokenizer import RobertaTokenizer
from keras_nlp.models.xlm_roberta.xlm_roberta_backbone import XLMRobertaBackbone
Expand Down
1 change: 1 addition & 0 deletions keras_nlp/models/roberta/roberta_classifier_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,7 @@ def setUp(self):
"Ġis": 9,
"Ġthe": 10,
"Ġbest": 11,
"<mask>": 12,
}

merges = ["Ġ a", "Ġ t", "Ġ k", "Ġ i", "Ġ b", "Ġa i", "p l", "n e"]
Expand Down
153 changes: 153 additions & 0 deletions keras_nlp/models/roberta/roberta_masked_lm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,153 @@
# Copyright 2022 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""RoBERTa masked lm model."""

import copy

from tensorflow import keras

from keras_nlp.layers.masked_lm_head import MaskedLMHead
from keras_nlp.models.roberta.roberta_backbone import RobertaBackbone
from keras_nlp.models.roberta.roberta_backbone import roberta_kernel_initializer
from keras_nlp.models.roberta.roberta_masked_lm_preprocessor import (
RobertaMaskedLMPreprocessor,
)
from keras_nlp.models.roberta.roberta_presets import backbone_presets
from keras_nlp.models.task import Task
from keras_nlp.utils.python_utils import classproperty


@keras.utils.register_keras_serializable(package="keras_nlp")
class RobertaMaskedLM(Task):
"""An end-to-end RoBERTa model for the masked language modeling task.
This model will train RoBERTa on a masked language modeling task.
The model will predict labels for a number of masked tokens in the
input data. For usage of this model with pre-trained weights, see the
`from_preset()` method.
This model can optionally be configured with a `preprocessor` layer, in
which case inputs can be raw string features during `fit()`, `predict()`,
and `evaluate()`. Inputs will be tokenized and dynamically masked during
training and evaluation. This is done by default when creating the model
with `from_preset()`.
Disclaimer: Pre-trained models are provided on an "as is" basis, without
warranties or conditions of any kind. The underlying model is provided by a
third party and subject to a separate license, available
[here](https://github.com/facebookresearch/fairseq).
Args:
backbone: A `keras_nlp.models.RobertaBackbone` instance.
preprocessor: A `keras_nlp.models.RobertaMaskedLMPreprocessor` or
`None`. If `None`, this model will not apply preprocessing, and
inputs should be preprocessed before calling the model.
Example usage:
Raw string inputs and pretrained backbone.
```python
# Create a dataset with raw string features. Labels are inferred.
features = ["The quick brown fox jumped.", "I forgot my homework."]
# Create a RobertaMaskedLM with a pretrained backbone and further train
# on an MLM task.
masked_lm = keras_nlp.models.RobertaMaskedLM.from_preset(
"roberta_base_en",
)
masked_lm.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
)
masked_lm.fit(x=features, batch_size=2)
```
Preprocessed inputs and custom backbone.
```python
# Create a preprocessed dataset where 0 is the mask token.
preprocessed_features = {
"token_ids": tf.constant(
[[1, 2, 0, 4, 0, 6, 7, 8]] * 2, shape=(2, 8)
),
"padding_mask": tf.constant(
[[1, 1, 1, 1, 1, 1, 1, 1]] * 2, shape=(2, 8)
),
"mask_positions": tf.constant([[2, 4]] * 2, shape=(2, 2))
}
# Labels are the original masked values.
labels = [[3, 5]] * 2
# Randomly initialize a RoBERTa encoder
backbone = keras_nlp.models.RobertaBackbone(
vocabulary_size=50265,
num_layers=12,
num_heads=12,
hidden_dim=768,
intermediate_dim=3072,
max_sequence_length=12
)
# Create a RoBERTa masked_lm and fit the data.
masked_lm = keras_nlp.models.RobertaMaskedLM(
backbone,
preprocessor=None,
)
masked_lm.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
)
masked_lm.fit(x=preprocessed_features, y=labels, batch_size=2)
```
"""

def __init__(
self,
backbone,
preprocessor=None,
**kwargs,
):
inputs = {
**backbone.input,
"mask_positions": keras.Input(
shape=(None,), dtype="int32", name="mask_positions"
),
}
backbone_outputs = backbone(backbone.input)
outputs = MaskedLMHead(
vocabulary_size=backbone.vocabulary_size,
embedding_weights=backbone.token_embedding.embeddings,
intermediate_activation="gelu",
kernel_initializer=roberta_kernel_initializer(),
name="mlm_head",
)(backbone_outputs, inputs["mask_positions"])

# Instantiate using Functional API Model constructor
super().__init__(
inputs=inputs,
outputs=outputs,
include_preprocessing=preprocessor is not None,
**kwargs,
)
# All references to `self` below this line
self.backbone = backbone
self.preprocessor = preprocessor

@classproperty
def backbone_cls(cls):
return RobertaBackbone

@classproperty
def preprocessor_cls(cls):
return RobertaMaskedLMPreprocessor

@classproperty
def presets(cls):
return copy.deepcopy(backbone_presets)
175 changes: 175 additions & 0 deletions keras_nlp/models/roberta/roberta_masked_lm_preprocessor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,175 @@
# Copyright 2022 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""RoBERTa masked language model preprocessor layer."""

from absl import logging
from tensorflow import keras

from keras_nlp.layers.masked_lm_mask_generator import MaskedLMMaskGenerator
from keras_nlp.models.roberta.roberta_preprocessor import RobertaPreprocessor
from keras_nlp.utils.keras_utils import pack_x_y_sample_weight


@keras.utils.register_keras_serializable(package="keras_nlp")
class RobertaMaskedLMPreprocessor(RobertaPreprocessor):
"""RoBERTa preprocessing for the masked language modeling task.
This preprocessing layer will prepare inputs for a masked language modeling
task. It is primarily intended for use with the
`keras_nlp.models.RobertaMaskedLM` task model. Preprocessing will occur in
multiple steps.
- Tokenize any number of input segments using the `tokenizer`.
- Pack the inputs together with the appropriate `"<s>"`, `"</s>"` and
`"<pad>"` tokens, i.e., adding a single `"<s>"` at the start of the
entire sequence, `"</s></s>"` between each segment,
and a `"</s>"` at the end of the entire sequence.
- Randomly select non-special tokens to mask, controlled by
`mask_selection_rate`.
- Construct a `(x, y, sample_weight)` tuple suitable for training with a
`keras_nlp.models.RobertaMaskedLM` task model.
Args:
tokenizer: A `keras_nlp.models.RobertaTokenizer` instance.
sequence_length: The length of the packed inputs.
mask_selection_rate: The probability an input token will be dynamically
masked.
mask_selection_length: The maximum number of masked tokens supported
by the layer.
mask_token_rate: float, defaults to 0.8. `mask_token_rate` must be
between 0 and 1 which indicates how often the mask_token is
substituted for tokens selected for masking.
random_token_rate: float, defaults to 0.1. `random_token_rate` must be
between 0 and 1 which indicates how often a random token is
substituted for tokens selected for masking. Default is 0.1.
Note: mask_token_rate + random_token_rate <= 1, and for
(1 - mask_token_rate - random_token_rate), the token will not be
changed.
truncate: string. The algorithm to truncate a list of batched segments
to fit within `sequence_length`. The value can be either
`round_robin` or `waterfall`:
- `"round_robin"`: Available space is assigned one token at a
time in a round-robin fashion to the inputs that still need
some, until the limit is reached.
- `"waterfall"`: The allocation of the budget is done using a
"waterfall" algorithm that allocates quota in a
left-to-right manner and fills up the buckets until we run
out of budget. It supports an arbitrary number of segments.
Examples:
```python
# Load the preprocessor from a preset.
preprocessor = keras_nlp.models.RobertaMaskedLMPreprocessor.from_preset(
"roberta_base_en"
)
# Tokenize and mask a single sentence.
sentence = tf.constant("The quick brown fox jumped.")
preprocessor(sentence)
# Tokenize and mask a batch of sentences.
sentences = tf.constant(
["The quick brown fox jumped.", "Call me Ishmael."]
)
preprocessor(sentences)
# Tokenize and mask a dataset of sentences.
features = tf.constant(
["The quick brown fox jumped.", "Call me Ishmael."]
)
ds = tf.data.Dataset.from_tensor_slices((features))
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Alternatively, you can create a preprocessor from your own vocabulary.
# The usage is exactly the same as above.
vocab = {"<s>": 0, "<pad>": 1, "</s>": 2, "<mask>": 3}
vocab = {**vocab, "a": 4, "Ġquick": 5, "Ġfox": 6}
merges = ["Ġ q", "u i", "c k", "ui ck", "Ġq uick", "Ġ f", "o x", "Ġf ox"]
tokenizer = keras_nlp.models.RobertaTokenizer(
vocabulary=vocab,
merges=merges,
)
preprocessor = keras_nlp.models.RobertaMaskedLMPreprocessor(
tokenizer=tokenizer,
sequence_length=8,
)
preprocessor("a quick fox")
```
"""

def __init__(
self,
tokenizer,
sequence_length=512,
truncate="round_robin",
mask_selection_rate=0.15,
mask_selection_length=96,
mask_token_rate=0.8,
random_token_rate=0.1,
**kwargs,
):
super().__init__(
tokenizer,
sequence_length=sequence_length,
truncate=truncate,
**kwargs,
)

self.masker = MaskedLMMaskGenerator(
mask_selection_rate=mask_selection_rate,
mask_selection_length=mask_selection_length,
mask_token_rate=mask_token_rate,
random_token_rate=random_token_rate,
vocabulary_size=tokenizer.vocabulary_size(),
mask_token_id=tokenizer.mask_token_id,
unselectable_token_ids=[
tokenizer.start_token_id,
tokenizer.end_token_id,
tokenizer.pad_token_id,
],
)

def get_config(self):
config = super().get_config()
config.update(
{
"mask_selection_rate": self.masker.mask_selection_rate,
"mask_selection_length": self.masker.mask_selection_length,
"mask_token_rate": self.masker.mask_token_rate,
"random_token_rate": self.masker.random_token_rate,
}
)
return config

def call(self, x, y=None, sample_weight=None):
if y is not None or sample_weight is not None:
logging.warning(
f"{self.__class__.__name__} generates `y` and `sample_weight` "
"based on your input data, but your data already contains `y` "
"or `sample_weight`. Your `y` and `sample_weight` will be "
"ignored."
)

x = super().call(x)
token_ids, padding_mask = x["token_ids"], x["padding_mask"]
masker_outputs = self.masker(token_ids)
x = {
"token_ids": masker_outputs["token_ids"],
"padding_mask": padding_mask,
"mask_positions": masker_outputs["mask_positions"],
}
y = masker_outputs["mask_ids"]
sample_weight = masker_outputs["mask_weights"]
return pack_x_y_sample_weight(x, y, sample_weight)
Loading

0 comments on commit 9a9be88

Please sign in to comment.