-
Notifications
You must be signed in to change notification settings - Fork 248
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
BertMaskedLM Task Model and Preprocessor (#774)
* bert_masekd_lm init * Merge branch 'master' into BertMaskedLM * WIP : BERT MASKED LM * Added Tests * Black Formatting * Fixed Format * Fixed formatting * black + lint.sh * Reformat codew * Updated Docstring for bert_tokenizer * Updated masked_lm_generator.py * fixed linting * Changed Boolean Variables tp Numeric * Formatted using shell/format.sh * Updated bert_masked_lm.py * typo fix --------- Co-authored-by: Matt Watson <[email protected]>
- Loading branch information
1 parent
a995dd6
commit 91fe6bd
Showing
6 changed files
with
579 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
# Copyright 2022 The KerasNLP Authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""BERT masked LM model.""" | ||
|
||
import copy | ||
|
||
from tensorflow import keras | ||
|
||
from keras_nlp.layers.masked_lm_head import MaskedLMHead | ||
from keras_nlp.models.bert.bert_backbone import BertBackbone | ||
from keras_nlp.models.bert.bert_backbone import bert_kernel_initializer | ||
from keras_nlp.models.bert.bert_masked_lm_preprocessor import ( | ||
BertMaskedLMPreprocessor, | ||
) | ||
from keras_nlp.models.bert.bert_presets import backbone_presets | ||
from keras_nlp.models.task import Task | ||
from keras_nlp.utils.python_utils import classproperty | ||
|
||
|
||
@keras.utils.register_keras_serializable(package="keras_nlp") | ||
class BertMaskedLM(Task): | ||
"""An end-to-end BERT model for the masked language modeling task. | ||
This model will train BERT on a masked language modeling task. | ||
The model will predict labels for a number of masked tokens in the | ||
input data. For usage of this model with pre-trained weights, see the | ||
`from_preset()` method. | ||
This model can optionally be configured with a `preprocessor` layer, in | ||
which case inputs can be raw string features during `fit()`, `predict()`, | ||
and `evaluate()`. Inputs will be tokenized and dynamically masked during | ||
training and evaluation. This is done by default when creating the model | ||
with `from_preset()`. | ||
Disclaimer: Pre-trained models are provided on an "as is" basis, without | ||
warranties or conditions of any kind. | ||
Args: | ||
backbone: A `keras_nlp.models.BertBackbone` instance. | ||
preprocessor: A `keras_nlp.models.BertMaskedLMPreprocessor` or | ||
`None`. If `None`, this model will not apply preprocessing, and | ||
inputs should be preprocessed before calling the model. | ||
Example usage: | ||
Raw string inputs and pretrained backbone. | ||
```python | ||
# Create a dataset with raw string features. Labels are inferred. | ||
features = ["The quick brown fox jumped.", "I forgot my homework."] | ||
# Create a BertMaskedLM with a pretrained backbone and further train | ||
# on an MLM task. | ||
masked_lm = keras_nlp.models.BertMaskedLM.from_preset( | ||
"bert_base_en", | ||
) | ||
masked_lm.compile( | ||
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), | ||
) | ||
masked_lm.fit(x=features, batch_size=2) | ||
``` | ||
Preprocessed inputs and custom backbone. | ||
```python | ||
# Create a preprocessed dataset where 0 is the mask token. | ||
preprocessed_features = { | ||
"token_ids": tf.constant( | ||
[[1, 2, 0, 4, 0, 6, 7, 8]] * 2, shape=(2, 8) | ||
), | ||
"padding_mask": tf.constant( | ||
[[1, 1, 1, 1, 1, 1, 1, 1]] * 2, shape=(2, 8) | ||
), | ||
"mask_positions": tf.constant([[2, 4]] * 2, shape=(2, 2)), | ||
"segment_ids": tf.constant([[0, 0, 0, 0, 0, 0, 0, 0]] * 2, shape=(2, 8)) | ||
} | ||
# Labels are the original masked values. | ||
labels = [[3, 5]] * 2 | ||
# Randomly initialize a BERT encoder | ||
backbone = keras_nlp.models.BertBackbone( | ||
vocabulary_size=50265, | ||
num_layers=12, | ||
num_heads=12, | ||
hidden_dim=768, | ||
intermediate_dim=3072, | ||
max_sequence_length=12 | ||
) | ||
# Create a BERT masked LM model and fit the data. | ||
masked_lm = keras_nlp.models.BertMaskedLM( | ||
backbone, | ||
preprocessor=None, | ||
) | ||
masked_lm.compile( | ||
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), | ||
) | ||
masked_lm.fit(x=preprocessed_features, y=labels, batch_size=2) | ||
``` | ||
""" | ||
|
||
def __init__( | ||
self, | ||
backbone, | ||
preprocessor=None, | ||
**kwargs, | ||
): | ||
inputs = { | ||
**backbone.input, | ||
"mask_positions": keras.Input( | ||
shape=(None,), dtype="int32", name="mask_positions" | ||
), | ||
} | ||
backbone_outputs = backbone(backbone.input) | ||
outputs = MaskedLMHead( | ||
vocabulary_size=backbone.vocabulary_size, | ||
embedding_weights=backbone.token_embedding.embeddings, | ||
intermediate_activation="gelu", | ||
kernel_initializer=bert_kernel_initializer(), | ||
name="mlm_head", | ||
)(backbone_outputs["sequence_output"], inputs["mask_positions"]) | ||
|
||
# Instantiate using Functional API Model constructor | ||
super().__init__( | ||
inputs=inputs, | ||
outputs=outputs, | ||
include_preprocessing=preprocessor is not None, | ||
**kwargs, | ||
) | ||
# All references to `self` below this line | ||
self.backbone = backbone | ||
self.preprocessor = preprocessor | ||
|
||
@classproperty | ||
def backbone_cls(cls): | ||
return BertBackbone | ||
|
||
@classproperty | ||
def preprocessor_cls(cls): | ||
return BertMaskedLMPreprocessor | ||
|
||
@classproperty | ||
def presets(cls): | ||
return copy.deepcopy(backbone_presets) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
# Copyright 2022 The KerasNLP Authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""BERT masked language model preprocessor layer.""" | ||
|
||
from absl import logging | ||
from tensorflow import keras | ||
|
||
from keras_nlp.layers.masked_lm_mask_generator import MaskedLMMaskGenerator | ||
from keras_nlp.models.bert.bert_preprocessor import BertPreprocessor | ||
from keras_nlp.utils.keras_utils import pack_x_y_sample_weight | ||
|
||
|
||
@keras.utils.register_keras_serializable(package="keras_nlp") | ||
class BertMaskedLMPreprocessor(BertPreprocessor): | ||
"""BERT preprocessing for the masked language modeling task. | ||
This preprocessing layer will prepare inputs for a masked language modeling | ||
task. It is primarily intended for use with the | ||
`keras_nlp.models.BertMaskedLM` task model. Preprocessing will occur in | ||
multiple steps. | ||
- Tokenize any number of input segments using the `tokenizer`. | ||
- Pack the inputs together using a `keras_nlp.layers.MultiSegmentPacker`. | ||
with the appropriate `"[CLS]"`, `"[SEP]"`, `"[SEP]"`, `"[SEP]"` and `"[PAD]"` tokens. | ||
- Randomly select non-special tokens to mask, controlled by | ||
`mask_selection_rate`. | ||
- Construct a `(x, y, sample_weight)` tuple suitable for training with a | ||
`keras_nlp.models.BertMaskedLM` task model. | ||
Examples: | ||
```python | ||
# Load the preprocessor from a preset. | ||
preprocessor = keras_nlp.models.BertMaskedLMPreprocessor.from_preset( | ||
"bert_base_en" | ||
) | ||
# Tokenize and mask a single sentence. | ||
sentence = tf.constant("The quick brown fox jumped.") | ||
preprocessor(sentence) | ||
# Tokenize and mask a batch of sentences. | ||
sentences = tf.constant( | ||
["The quick brown fox jumped.", "Call me Ishmael."] | ||
) | ||
preprocessor(sentences) | ||
# Tokenize and mask a dataset of sentences. | ||
features = tf.constant( | ||
["The quick brown fox jumped.", "Call me Ishmael."] | ||
) | ||
ds = tf.data.Dataset.from_tensor_slices((features)) | ||
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE) | ||
# Alternatively, you can create a preprocessor from your own vocabulary. | ||
# The usage is exactly the same as above. | ||
vocab = ["[PAD]", "[UNK]", "[CLS]", "[SEP]", "[MASK]"] | ||
vocab += ["THE", "QUICK", "BROWN", "FOX"] | ||
vocab += ["Call", "me", "Ishmael"] | ||
tokenizer = keras_nlp.models.BertTokenizer(vocabulary=vocab) | ||
preprocessor = keras_nlp.models.BertMaskedLMPreprocessor(tokenizer) | ||
``` | ||
""" | ||
|
||
def __init__( | ||
self, | ||
tokenizer, | ||
sequence_length=512, | ||
truncate="round_robin", | ||
mask_selection_rate=0.15, | ||
mask_selection_length=96, | ||
mask_token_rate=0.8, | ||
random_token_rate=0.1, | ||
**kwargs, | ||
): | ||
super().__init__( | ||
tokenizer, | ||
sequence_length=sequence_length, | ||
truncate=truncate, | ||
**kwargs, | ||
) | ||
|
||
self.masker = MaskedLMMaskGenerator( | ||
mask_selection_rate=mask_selection_rate, | ||
mask_selection_length=mask_selection_length, | ||
mask_token_rate=mask_token_rate, | ||
random_token_rate=random_token_rate, | ||
vocabulary_size=tokenizer.vocabulary_size(), | ||
mask_token_id=tokenizer.mask_token_id, | ||
unselectable_token_ids=[ | ||
tokenizer.cls_token_id, | ||
tokenizer.sep_token_id, | ||
tokenizer.pad_token_id, | ||
], | ||
) | ||
|
||
def get_config(self): | ||
config = super().get_config() | ||
config.update( | ||
{ | ||
"mask_selection_rate": self.masker.mask_selection_rate, | ||
"mask_selection_length": self.masker.mask_selection_length, | ||
"mask_token_rate": self.masker.mask_token_rate, | ||
"random_token_rate": self.masker.random_token_rate, | ||
} | ||
) | ||
return config | ||
|
||
def call(self, x, y=None, sample_weight=None): | ||
if y is not None or sample_weight is not None: | ||
logging.warning( | ||
f"{self.__class__.__name__} generates `y` and `sample_weight` " | ||
"based on your input data, but your data already contains `y` " | ||
"or `sample_weight`. Your `y` and `sample_weight` will be " | ||
"ignored." | ||
) | ||
|
||
x = super().call(x) | ||
|
||
token_ids, padding_mask, segment_ids = ( | ||
x["token_ids"], | ||
x["padding_mask"], | ||
x["segment_ids"], | ||
) | ||
masker_outputs = self.masker(token_ids) | ||
x = { | ||
"token_ids": masker_outputs["token_ids"], | ||
"padding_mask": padding_mask, | ||
"segment_ids": segment_ids, | ||
"mask_positions": masker_outputs["mask_positions"], | ||
} | ||
y = masker_outputs["mask_ids"] | ||
sample_weight = masker_outputs["mask_weights"] | ||
return pack_x_y_sample_weight(x, y, sample_weight) |
Oops, something went wrong.