Skip to content

Commit

Permalink
Fixing rank 1 outputs for WordPieceTokenizer (#92)
Browse files Browse the repository at this point in the history
* Fixed Rank Issue

* Testing

* Testing

* Fixed Test

* Fixed Typo

* Fixing Typo

* debug

* Rank0 Set

* Removed Debug Statements

* Added Docstring

* Added Unit Test and Minor Changes in Doc String

* Ran format.sh and lint.sh

* Post Review Changes
  • Loading branch information
aflah02 authored Apr 7, 2022
1 parent c8e69c2 commit 7654761
Show file tree
Hide file tree
Showing 2 changed files with 23 additions and 0 deletions.
11 changes: 11 additions & 0 deletions keras_nlp/tokenizers/word_piece_tokenizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -256,6 +256,12 @@ def get_config(self) -> Dict[str, Any]:
return config

def tokenize(self, inputs):
# Check if Input is Scalar or Not
if not isinstance(inputs, (tf.Tensor, tf.RaggedTensor)):
inputs = tf.convert_to_tensor(inputs)
scalar_input = tf.convert_to_tensor(inputs).shape.rank == 0
if scalar_input:
inputs = tf.expand_dims(inputs, 0)
# Optionally normalize and split inputs.
if self._lowercase:
inputs = tf_text.case_fold_utf8(inputs)
Expand All @@ -282,6 +288,11 @@ def tokenize(self, inputs):
output_shape = tokens.shape.as_list()
output_shape[-1] = self._sequence_length
tokens = tokens.to_tensor(shape=output_shape)
# Convert to a dense output if input in scalar
if scalar_input:
tokens = tf.squeeze(tokens, 0)
tf.ensure_shape(tokens, shape=[self._sequence_length])

return tokens

def detokenize(self, inputs):
Expand Down
12 changes: 12 additions & 0 deletions keras_nlp/tokenizers/word_piece_tokenizer_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -163,6 +163,18 @@ def test_functional_model(self):
model_output = model(input_data)
self.assertAllEqual(model_output, ["the quick brown fox"])

def test_batching_ragged_tensors(self):
tokenizer = WordPieceTokenizer(
vocabulary=["[UNK]", "a", "b", "c", "d", "e", "f"]
)
dataset = tf.data.Dataset.from_tensor_slices(["a b c", "d e", "a f e"])
dataset = dataset.map(tokenizer)
dataset = dataset.apply(
tf.data.experimental.dense_to_ragged_batch(batch_size=1)
)
element = dataset.take(1).get_single_element().numpy()
self.assertAllEqual(element, [[1, 2, 3]])

def test_from_file(self):
vocab_path = os.path.join(self.get_temp_dir(), "vocab.txt")
input_data = ["the quick brown fox."]
Expand Down

0 comments on commit 7654761

Please sign in to comment.