Skip to content

Commit

Permalink
change softmax layer to return logits
Browse files Browse the repository at this point in the history
  • Loading branch information
chenmoneygithub committed May 11, 2022
1 parent d75844b commit 2bfef5d
Showing 1 changed file with 4 additions and 5 deletions.
9 changes: 4 additions & 5 deletions examples/bert/run_glue_finetuning.py
Original file line number Diff line number Diff line change
Expand Up @@ -153,18 +153,17 @@ def __init__(self, bert_model, hidden_size, num_classes, **kwargs):
activation="tanh",
name="pooler",
)
self._probability_layer = tf.keras.layers.Dense(
self._logit_layer = tf.keras.layers.Dense(
num_classes,
name="probability",
activation="softmax",
name="logits",
)

def call(self, inputs):
outputs = self.bert_model(inputs)
# Get the first [CLS] token from each output.
outputs = outputs[:, 0, :]
outputs = self._pooler_layer(outputs)
return self._probability_layer(outputs)
return self._logit_layer(outputs)


class BertHyperModel(keras_tuner.HyperModel):
Expand All @@ -185,7 +184,7 @@ def build(self, hp):
optimizer=keras.optimizers.Adam(
learning_rate=hp.Choice("lr", [5e-5, 4e-5, 3e-5, 2e-5])
),
loss=keras.losses.SparseCategoricalCrossentropy(),
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[keras.metrics.SparseCategoricalAccuracy()],
)
return finetuning_model
Expand Down

0 comments on commit 2bfef5d

Please sign in to comment.