-
Notifications
You must be signed in to change notification settings - Fork 248
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Add rough BLEU Score implementation * Add BLEU score class * Add arg for corpus BLEU and sentence BLEU * Minor bug fixes * More bug fixes * Add doc-strings * Add references * Address reew comments - I * Add UTs, allow dtypes other than string tensors, remove Sentence BLEU * Address review comments-II, make shape changes * Address review comments-III * Serialise tokenizer * Small fixes * Doc-string changes
- Loading branch information
1 parent
c71847e
commit 13a9f2d
Showing
8 changed files
with
697 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,386 @@ | ||
# Copyright 2022 The KerasNLP Authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""BLEU metric implementation.""" | ||
|
||
import collections | ||
import math | ||
|
||
import tensorflow as tf | ||
from tensorflow import keras | ||
|
||
from keras_nlp.utils.tensor_utils import tensor_to_list | ||
|
||
REPLACE_SUBSTRINGS = [ | ||
("<skipped>", ""), | ||
("-\n", ""), | ||
("\n", " "), | ||
(""", '"'), | ||
("&", "&"), | ||
("<", "<"), | ||
(">", ">"), | ||
] | ||
|
||
|
||
REGEX_PATTERNS = [ | ||
# language-dependent part (assuming Western languages) | ||
(r"([\{-\~\[-\` -\&\(-\+\:-\@\/])", r" \1 "), | ||
# tokenize period and comma unless preceded by a digit | ||
(r"([^0-9])([\.,])", r"\1 \2 "), | ||
# tokenize period and comma unless followed by a digit | ||
(r"([\.,])([^0-9])", r" \1 \2"), | ||
# tokenize dash when preceded by a digit | ||
(r"([0-9])(-)", r"\1 \2 "), | ||
# If last character is "." or ",", add space. | ||
(r"[\.,]$", r" \0 \1"), | ||
# one space only between words | ||
(r"\s+", r" "), | ||
] | ||
|
||
|
||
class Bleu(keras.metrics.Metric): | ||
"""BLEU metric. | ||
This class implements the BLEU metric. BLEU is generally used to evaluate | ||
machine translation systems. By default, this implementation replicates | ||
SacreBLEU, but user-defined tokenizers can be passed to deal with other | ||
languages. | ||
For BLEU score, we count the number of matching n-grams in the candidate | ||
translation and the reference text. We find the "clipped count" of matching | ||
n-grams so as to not give a high score to a (reference, prediction) pair | ||
with redundant, repeated tokens. Secondly, BLEU score tends to reward | ||
shorter predictions more, which is why a brevity penalty is applied to | ||
penalise short predictions. For more details, see the following article: | ||
https://cloud.google.com/translate/automl/docs/evaluate#bleu. | ||
Note on input shapes: | ||
For unbatched inputs, `y_pred` should be a tensor of shape `()`, and | ||
`y_true` should be a tensor of shape `(num_references,)`. For batched | ||
inputs, `y_pred` should be a tensor of shape `(batch_size,)`, | ||
and `y_true` should be a tensor of shape `(batch_size, num_references)`. In | ||
case of batched inputs, `y_true` can also be a ragged tensor of shape | ||
`(batch_size, None)` if different samples have different number of | ||
references. | ||
Args: | ||
tokenizer: callable. A function that takes a string `tf.RaggedTensor` | ||
(of any shape), and tokenizes the strings in the tensor. If the | ||
tokenizer is not specified, the default tokenizer is used. The | ||
default tokenizer replicates the behaviour of SacreBLEU's | ||
`"tokenizer_13a"` tokenizer | ||
(https://github.com/mjpost/sacrebleu/blob/v2.1.0/sacrebleu/tokenizers/tokenizer_13a.py). | ||
max_order: int. The maximum n-gram order to use. For example, if | ||
`max_order` is set to 3, unigrams, bigrams, and trigrams will be | ||
considered. Defaults to 4. | ||
smooth: bool. Whether to apply Lin et al. 2004 smoothing to the BLEU | ||
score. Adds 1 to the matched n-gram count (i.e., numerator) and 1 | ||
to the total n-gram count (i.e., denominator) for every order while | ||
calculating precision. Defaults to False. | ||
dtype: string or tf.dtypes.Dtype. Precision of metric computation. If | ||
not specified, it defaults to tf.float32. | ||
name: string. Name of the metric instance. | ||
**kwargs: Other keyword arguments. | ||
References: | ||
- [Papineni et al., 2002](https://aclanthology.org/P02-1040/) | ||
- [SacreBLEU](https://github.com/mjpost/sacrebleu) | ||
- [Lin et al., 2004](https://aclanthology.org/P04-1077/) | ||
""" | ||
|
||
def __init__( | ||
self, | ||
tokenizer=None, | ||
max_order=4, | ||
smooth=False, | ||
dtype=None, | ||
name="bleu", | ||
**kwargs, | ||
): | ||
super().__init__(name=name, dtype=dtype, **kwargs) | ||
|
||
if not tf.as_dtype(self.dtype).is_floating: | ||
raise ValueError( | ||
"`dtype` must be a floating point type. " | ||
f"Received: dtype={dtype}" | ||
) | ||
|
||
self.tokenizer = tokenizer | ||
self.max_order = max_order | ||
self.smooth = smooth | ||
|
||
self._matches = self.add_weight( | ||
shape=(self.max_order,), | ||
name="bleu_matches", | ||
initializer="zeros", | ||
dtype=self.dtype, | ||
) | ||
self._possible_matches = self.add_weight( | ||
shape=(self.max_order,), | ||
name="bleu_possible_matches", | ||
initializer="zeros", | ||
dtype=self.dtype, | ||
) | ||
self._translation_length = self.add_weight( | ||
name="bleu_translation_length", | ||
initializer="zeros", | ||
dtype=self.dtype, | ||
) | ||
self._reference_length = self.add_weight( | ||
name="bleu_reference_length", | ||
initializer="zeros", | ||
dtype=self.dtype, | ||
) | ||
self._bleu = self.add_weight( | ||
name="bleu", | ||
initializer="zeros", | ||
dtype=self.dtype, | ||
) | ||
|
||
def _tokenizer(self, inputs): | ||
""" | ||
Tokenizes the input strings. By default, replicates the behaviour of | ||
SacreBLEU's default tokenizer, namely, `tokenizer_13a`. | ||
""" | ||
if self.tokenizer: | ||
return self.tokenizer(inputs) | ||
|
||
for pattern, replacement in REPLACE_SUBSTRINGS + REGEX_PATTERNS: | ||
inputs = tf.strings.regex_replace( | ||
input=inputs, | ||
pattern=pattern, | ||
rewrite=replacement, | ||
replace_global=True, | ||
name=None, | ||
) | ||
inputs = tf.strings.split(inputs) | ||
return inputs | ||
|
||
def _get_ngrams(self, segment, max_order): | ||
"""Extracts all n-grams up to a given maximum order from an input segment. | ||
Uses Python ops. Inspired from | ||
https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py. | ||
Args: | ||
segment: list. Text segment from which n-grams will be | ||
extracted. | ||
max_order: int. Maximum length in tokens of the n-grams returned | ||
by this method. | ||
""" | ||
ngram_counts = collections.Counter() | ||
for order in range(1, max_order + 1): | ||
for i in range(0, len(segment) - order + 1): | ||
ngram = tuple(segment[i : i + order]) | ||
ngram_counts[ngram] += 1 | ||
return ngram_counts | ||
|
||
def _corpus_bleu( | ||
self, | ||
reference_corpus, | ||
translation_corpus, | ||
matches_by_order, | ||
possible_matches_by_order, | ||
translation_length, | ||
reference_length, | ||
max_order=4, | ||
smooth=False, | ||
): | ||
"""Corpus BLEU implementation using Python ops. | ||
Computes BLEU score of translated segments against one or more | ||
references. Inspired from | ||
https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py. | ||
Args: | ||
reference_corpus: list of lists of references for each | ||
translation. Each reference should be tokenized into a list | ||
of tokens. | ||
translation_corpus: list of translations to score. Each | ||
translation should be tokenized into a list of tokens. | ||
matches_by_order: list of floats containing the initial number | ||
of matches for each order. | ||
possible_matches_by_order: list of floats containing the initial | ||
number of possible matches for each order. | ||
translation_length: float. Initial number of tokens in all the | ||
translations. | ||
reference_length: float. Initial number of tokens in all the | ||
references. | ||
max_order: int. Maximum n-gram order to use when computing | ||
BLEU score. | ||
smooth: boolean. Whether or not to apply Lin et al. 2004 | ||
smoothing. | ||
""" | ||
for (references, translation) in zip( | ||
reference_corpus, translation_corpus | ||
): | ||
reference_length += min(len(r) for r in references) | ||
translation_length += len(translation) | ||
|
||
merged_ref_ngram_counts = collections.Counter() | ||
for reference in references: | ||
merged_ref_ngram_counts |= self._get_ngrams( | ||
reference, max_order | ||
) | ||
translation_ngram_counts = self._get_ngrams(translation, max_order) | ||
overlap = translation_ngram_counts & merged_ref_ngram_counts | ||
for ngram in overlap: | ||
matches_by_order[len(ngram) - 1] += overlap[ngram] | ||
for order in range(1, max_order + 1): | ||
possible_matches = len(translation) - order + 1 | ||
if possible_matches > 0: | ||
possible_matches_by_order[order - 1] += possible_matches | ||
|
||
precisions = [0] * max_order | ||
for i in range(0, max_order): | ||
if smooth: | ||
precisions[i] = (matches_by_order[i] + 1.0) / ( | ||
possible_matches_by_order[i] + 1.0 | ||
) | ||
else: | ||
if possible_matches_by_order[i] > 0: | ||
precisions[i] = ( | ||
float(matches_by_order[i]) | ||
/ possible_matches_by_order[i] | ||
) | ||
else: | ||
precisions[i] = 0.0 | ||
|
||
if min(precisions) > 0: | ||
p_log_sum = sum((1.0 / max_order) * math.log(p) for p in precisions) | ||
geo_mean = math.exp(p_log_sum) | ||
else: | ||
geo_mean = 0 | ||
|
||
ratio = float(translation_length) / reference_length | ||
|
||
if ratio > 1.0: | ||
bp = 1.0 | ||
else: | ||
bp = math.exp(1 - 1.0 / ratio) | ||
|
||
bleu = geo_mean * bp | ||
|
||
return ( | ||
bleu, | ||
matches_by_order, | ||
possible_matches_by_order, | ||
translation_length, | ||
reference_length, | ||
) | ||
|
||
def _calculate_bleu_score(self, references, translation): | ||
references = tensor_to_list(references) | ||
translation = tensor_to_list(translation) | ||
|
||
matches = self._matches.numpy() | ||
possible_matches = self._possible_matches.numpy() | ||
translation_length = self._translation_length.numpy() | ||
reference_length = self._reference_length.numpy() | ||
|
||
( | ||
bleu_score, | ||
matches, | ||
possible_matches, | ||
translation_length, | ||
reference_length, | ||
) = self._corpus_bleu( | ||
reference_corpus=references, | ||
translation_corpus=translation, | ||
matches_by_order=matches, | ||
possible_matches_by_order=possible_matches, | ||
translation_length=translation_length, | ||
reference_length=reference_length, | ||
max_order=self.max_order, | ||
smooth=self.smooth, | ||
) | ||
return ( | ||
tf.constant(bleu_score, dtype=self.dtype), | ||
tf.constant(matches, dtype=self.dtype), | ||
tf.constant(possible_matches, dtype=self.dtype), | ||
tf.constant(translation_length, dtype=self.dtype), | ||
tf.constant(reference_length, dtype=self.dtype), | ||
) | ||
|
||
def update_state(self, y_true, y_pred, sample_weight=None): | ||
def validate_and_fix_rank(inputs, tensor_name, base_rank=0): | ||
if not isinstance(inputs, (tf.Tensor, tf.RaggedTensor)): | ||
inputs = tf.convert_to_tensor(inputs) | ||
|
||
if inputs.shape.rank == base_rank: | ||
return inputs[tf.newaxis] | ||
elif inputs.shape.rank == base_rank + 1: | ||
return inputs | ||
elif inputs.shape.rank == base_rank + 2: | ||
if tf.shape(inputs)[-1] != 1: | ||
raise ValueError( | ||
f"{tensor_name} is of rank {input.shape.rank}. The " | ||
f"last dimension must be of size 1." | ||
) | ||
return tf.squeeze(inputs, axis=-1) | ||
else: | ||
raise ValueError( | ||
f"{tensor_name} must be of rank {base_rank}, {base_rank+1} " | ||
f"or {base_rank+2}. Found rank: {inputs.shape.rank}" | ||
) | ||
|
||
y_true = validate_and_fix_rank(y_true, "y_true", 1) | ||
y_pred = validate_and_fix_rank(y_pred, "y_pred", 0) | ||
|
||
# Tokenize the inputs. | ||
y_true = self._tokenizer(y_true) | ||
y_pred = self._tokenizer(y_pred) | ||
|
||
( | ||
bleu_score, | ||
matches, | ||
possible_matches, | ||
translation_length, | ||
reference_length, | ||
) = tf.py_function( | ||
func=self._calculate_bleu_score, | ||
inp=[y_true, y_pred], | ||
Tout=[self.dtype, self.dtype, self.dtype, self.dtype, self.dtype], | ||
) | ||
|
||
self._matches.assign(matches) | ||
self._possible_matches.assign(possible_matches) | ||
self._translation_length.assign(translation_length) | ||
self._reference_length.assign(reference_length) | ||
self._bleu.assign(bleu_score) | ||
|
||
def result(self): | ||
return self._bleu | ||
|
||
def reset_state(self): | ||
self._matches.assign( | ||
tf.zeros(shape=(self.max_order,), dtype=self.dtype) | ||
) | ||
self._possible_matches.assign( | ||
tf.zeros(shape=(self.max_order,), dtype=self.dtype) | ||
) | ||
self._translation_length.assign(0.0) | ||
self._reference_length.assign(0.0) | ||
self._bleu.assign(0.0) | ||
|
||
def get_config(self): | ||
config = super().get_config() | ||
config.update( | ||
{ | ||
"tokenizer": self.tokenizer, | ||
"max_order": self.max_order, | ||
"smooth": self.smooth, | ||
} | ||
) | ||
return config |
Oops, something went wrong.