Skip to content

Commit

Permalink
return empty tensor instead of None (pytorch#332)
Browse files Browse the repository at this point in the history
Summary:
Pull Request resolved: pytorch#332

To allow efficient use of fork/join annotation, we return an empty tensor instead of `None` for `encoder_padding_mask` from transformer encoder in the unmasked/inference case.

Note that this slight hack is preferable to more far-reaching changes in, e.g., Fairseq multihead_attention.

Differential Revision: D13969691

fbshipit-source-id: 5b6106d8f4ac311ca4a5708898639b18ab2be07d
  • Loading branch information
jhcross authored and facebook-github-bot committed Feb 6, 2019
1 parent 6cbe391 commit f7d1697
Show file tree
Hide file tree
Showing 3 changed files with 15 additions and 15 deletions.
18 changes: 4 additions & 14 deletions pytorch_translate/ensemble_export.py
Original file line number Diff line number Diff line change
Expand Up @@ -256,22 +256,12 @@ def forward(self, src_tokens, src_lengths):
# evaluation mode
model.eval()

# TODO(jamesreed): transformer encodder returns a None output, and
# the fork/join API doesn't handle that well. We should figure out
# a way to annotate outputs as Optional and record that in fork/join
# traces.
if isinstance(model.encoder, TransformerEncoder):
futures.append(model.encoder(src_tokens_seq_first, src_lengths))
else:
futures.append(
torch.jit._fork(model.encoder, src_tokens_seq_first, src_lengths)
)
futures.append(
torch.jit._fork(model.encoder, src_tokens_seq_first, src_lengths)
)

for i, (model, future) in enumerate(zip(self.models, futures)):
if isinstance(model.encoder, TransformerEncoder):
encoder_out = future
else:
encoder_out = torch.jit._wait(future)
encoder_out = torch.jit._wait(future)
# "primary" encoder output (vector representations per source token)
encoder_outputs = encoder_out[0]
outputs.append(encoder_outputs)
Expand Down
3 changes: 3 additions & 0 deletions pytorch_translate/hybrid_transformer_rnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -247,6 +247,9 @@ def forward(
):
(encoder_x, src_tokens, encoder_padding_mask) = encoder_out

if encoder_padding_mask is not None and encoder_padding_mask.numel() == 0:
encoder_padding_mask = None

bsz, seqlen = prev_output_tokens.size()
if incremental_state is not None:
prev_output_tokens = prev_output_tokens[:, -1:]
Expand Down
9 changes: 8 additions & 1 deletion pytorch_translate/transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -277,6 +277,10 @@ def forward(self, src_tokens, src_lengths):
x=x, positions=positions, encoder_padding_mask=encoder_padding_mask
)

if encoder_padding_mask is None:
# using an empty tensor instead of None for PyTorch native export
encoder_padding_mask = torch.Tensor().type_as(src_tokens)

return x, src_tokens, encoder_padding_mask

def reorder_encoder_out(self, encoder_out, new_order):
Expand All @@ -285,7 +289,7 @@ def reorder_encoder_out(self, encoder_out, new_order):
x = x.index_select(1, new_order)
if src_tokens is not None:
src_tokens = src_tokens.index_select(0, new_order)
if encoder_padding_mask is not None:
if encoder_padding_mask is not None and encoder_padding_mask.numel() != 0:
encoder_padding_mask = encoder_padding_mask.index_select(0, new_order)
return (x, src_tokens, encoder_padding_mask)

Expand Down Expand Up @@ -382,6 +386,9 @@ def forward(
):
(encoder_x, src_tokens, encoder_padding_mask) = encoder_out

if encoder_padding_mask is not None and encoder_padding_mask.numel() == 0:
encoder_padding_mask = None

# embed positions
positions = self.embed_positions(
prev_output_tokens, incremental_state=incremental_state, timestep=timestep
Expand Down

0 comments on commit f7d1697

Please sign in to comment.