-
Notifications
You must be signed in to change notification settings - Fork 42
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Render the "iterate over rows" benchmark
- Loading branch information
Showing
5 changed files
with
254 additions
and
16 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,221 @@ | ||
Turn data frame into a list, one component per row | ||
================ | ||
Jenny Bryan, updating work of Winston Chang | ||
2018-04-10 | ||
|
||
Update of <https://rpubs.com/wch/200398>. | ||
|
||
- Added some methods, removed some methods. | ||
- Run every combination of problem size & method multiple times. | ||
- Explore different number of rows and columns, with mixed col types. | ||
|
||
<!-- end list --> | ||
|
||
``` r | ||
library(scales) | ||
library(forcats) | ||
library(tidyverse) | ||
``` | ||
|
||
## ── Attaching packages ───────────────────────────────────────── tidyverse 1.2.1 ── | ||
|
||
## ✔ ggplot2 2.2.1 ✔ readr 1.1.1.9000 | ||
## ✔ tibble 1.4.2 ✔ purrr 0.2.4.9000 | ||
## ✔ tidyr 0.8.0 ✔ dplyr 0.7.4.9000 | ||
## ✔ ggplot2 2.2.1 ✔ stringr 1.3.0 | ||
|
||
## ── Conflicts ──────────────────────────────────────────── tidyverse_conflicts() ── | ||
## ✖ readr::col_factor() masks scales::col_factor() | ||
## ✖ purrr::discard() masks scales::discard() | ||
## ✖ dplyr::filter() masks stats::filter() | ||
## ✖ dplyr::lag() masks stats::lag() | ||
|
||
``` r | ||
# for loop over row index | ||
f_for_loop <- function(df) { | ||
out <- vector(mode = "list", length = nrow(df)) | ||
for (i in seq_along(out)) { | ||
out[[i]] <- as.list(df[i, , drop = FALSE]) | ||
} | ||
out | ||
} | ||
|
||
# split into single row data frames then + lapply | ||
f_split_lapply <- function(df) { | ||
df <- split(df, seq_len(nrow(df))) | ||
lapply(df, function(row) as.list(row)) | ||
} | ||
|
||
# lapply over the vector of row numbers | ||
f_lapply_row <- function(df) { | ||
lapply(seq_len(nrow(df)), function(i) as.list(df[i, , drop = FALSE])) | ||
} | ||
|
||
# purrr::pmap | ||
f_pmap <- function(df) { | ||
pmap(df, list) | ||
} | ||
|
||
# purrr::transpose (happens to be exactly what's needed here) | ||
f_transpose <- function(df) { | ||
transpose(df) | ||
} | ||
|
||
## explicit gc, then execute `expr` `n` times w/o explicit gc, return timings | ||
benchmark <- function(n = 1, expr, envir = parent.frame()) { | ||
expr <- substitute(expr) | ||
gc() | ||
map(seq_len(n), ~ system.time(eval(expr, envir), gcFirst = FALSE)) | ||
} | ||
|
||
run_row_benchmark <- function(nrow, times = 5) { | ||
df <- data.frame( | ||
x = rep_len(letters, length.out = nrow), | ||
y = runif(nrow), | ||
z = seq_len(nrow) | ||
) | ||
res <- list( | ||
transpose = benchmark(times, f_transpose(df)), | ||
pmap = benchmark(times, f_pmap(df)), | ||
split_lapply = benchmark(times, f_split_lapply(df)), | ||
lapply_row = benchmark(times, f_lapply_row(df)), | ||
for_loop = benchmark(times, f_for_loop(df)) | ||
) | ||
res <- map(res, ~ map_dbl(.x, "elapsed")) | ||
tibble( | ||
nrow = nrow, | ||
method = rep(names(res), lengths(res)), | ||
time = flatten_dbl(res) | ||
) | ||
} | ||
|
||
run_col_benchmark <- function(ncol, times = 5) { | ||
nrow <- 3 | ||
template <- data.frame( | ||
x = letters[seq_len(nrow)], | ||
y = runif(nrow), | ||
z = seq_len(nrow) | ||
) | ||
df <- template[rep_len(seq_len(ncol(template)), length.out = ncol)] | ||
res <- list( | ||
transpose = benchmark(times, f_transpose(df)), | ||
pmap = benchmark(times, f_pmap(df)), | ||
split_lapply = benchmark(times, f_split_lapply(df)), | ||
lapply_row = benchmark(times, f_lapply_row(df)), | ||
for_loop = benchmark(times, f_for_loop(df)) | ||
) | ||
res <- map(res, ~ map_dbl(.x, "elapsed")) | ||
tibble( | ||
ncol = ncol, | ||
method = rep(names(res), lengths(res)), | ||
time = flatten_dbl(res) | ||
) | ||
} | ||
|
||
## force figs to present methods in order of time | ||
flevels <- function(df) { | ||
mutate(df, method = fct_reorder(method, x = desc(time))) | ||
} | ||
|
||
plot_it <- function(df, what = "nrow") { | ||
log10_breaks <- trans_breaks("log10", function(x) 10 ^ x) | ||
log10_mbreaks <- function(x) { | ||
limits <- c(floor(log10(x[1])), ceiling(log10(x[2]))) | ||
breaks <- 10 ^ seq(limits[1], limits[2]) | ||
|
||
unlist(lapply(breaks, function(x) x * seq(0.1, 0.9, by = 0.1))) | ||
} | ||
log10_labels <- trans_format("log10", math_format(10 ^ .x)) | ||
|
||
ggplot( | ||
df %>% dplyr::filter(time > 0), | ||
aes_string(x = what, y = "time", colour = "method") | ||
) + | ||
geom_point() + | ||
stat_summary(aes(group = method), fun.y = mean, geom = "line") + | ||
scale_y_log10( | ||
breaks = log10_breaks, labels = log10_labels, minor_breaks = log10_mbreaks | ||
) + | ||
scale_x_log10( | ||
breaks = log10_breaks, labels = log10_labels, minor_breaks = log10_mbreaks | ||
) + | ||
labs( | ||
x = paste0("Number of ", if (what == "nrow") "rows" else "columns"), | ||
y = "Time (s)" | ||
) + | ||
theme_bw() + | ||
theme(aspect.ratio = 1, legend.justification = "top") | ||
} | ||
|
||
## dry runs | ||
# df_test <- run_row_benchmark(nrow = 10000) %>% flevels() | ||
# df_test <- run_col_benchmark(ncol = 10000) %>% flevels() | ||
# ggplot(df_test, aes(x = method, y = time)) + | ||
# geom_jitter(width = 0.25, height = 0) + | ||
# scale_y_log10() | ||
|
||
## The Real Thing | ||
## fairly fast up to 10^4, go get a coffee at 10^5 (row case only) | ||
#df_r <- map_df(10 ^ (1:5), run_row_benchmark) %>% flevels() | ||
#write_csv(df_r, "row-benchmark.csv") | ||
df_r <- read_csv("row-benchmark.csv") %>% flevels() | ||
``` | ||
|
||
## Parsed with column specification: | ||
## cols( | ||
## nrow = col_double(), | ||
## method = col_character(), | ||
## time = col_double() | ||
## ) | ||
|
||
``` r | ||
plot_it(df_r, "nrow") | ||
``` | ||
|
||
<!-- --> | ||
|
||
``` r | ||
#ggsave("row-benchmark.png") | ||
|
||
#df_c <- map_df(10 ^ (1:5), run_col_benchmark) %>% flevels() | ||
#write_csv(df_c, "col-benchmark.csv") | ||
df_c <- read_csv("col-benchmark.csv") %>% flevels() | ||
``` | ||
|
||
## Parsed with column specification: | ||
## cols( | ||
## ncol = col_double(), | ||
## method = col_character(), | ||
## time = col_double() | ||
## ) | ||
|
||
``` r | ||
plot_it(df_c, "ncol") | ||
``` | ||
|
||
<!-- --> | ||
|
||
``` r | ||
#ggsave("col-benchmark.png") | ||
|
||
## used at first, but saw same dramatic gc artefacts as described here | ||
## in my plots | ||
## https://radfordneal.wordpress.com/2014/02/02/inaccurate-results-from-microbenchmark/ | ||
## went for a DIY solution where I control gc | ||
# library(microbenchmark) | ||
# run_row_microbenchmark <- function(nrow, times = 5) { | ||
# df <- data.frame(x = rnorm(nrow), y = runif(nrow), z = runif(nrow)) | ||
# microbenchmark( | ||
# for_loop = f_for_loop(df), | ||
# split_lapply = f_split_lapply(df), | ||
# lapply_row = f_lapply_row(df), | ||
# pmap = f_pmap(df), | ||
# transpose = f_transpose(df), | ||
# times = times | ||
# ) %>% | ||
# as_tibble() %>% | ||
# rename(method = expr) %>% | ||
# mutate(method = as.character(method)) %>% | ||
# add_column(nrow = nrow, .before = 1) | ||
# } | ||
``` |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.