Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

updated docs for 4.2.1.0 #92

Merged
merged 1 commit into from
Dec 10, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file modified docs/_build/doctrees/environment.pickle
Binary file not shown.
Binary file modified docs/_build/doctrees/index.doctree
Binary file not shown.
10 changes: 5 additions & 5 deletions docs/_build/html/_modules/tigramite/data_processing.html
Original file line number Diff line number Diff line change
Expand Up @@ -206,10 +206,10 @@ <h1>Source code for tigramite.data_processing</h1><div class="highlight"><pre>

<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> array, xyz [,XYZ] : Tuple of data array of shape (dim, T) and xyz</span>
<span class="sd"> array, xyz [,XYZ] : Tuple of data array of shape (dim, time) and xyz</span>
<span class="sd"> identifier array of shape (dim,) identifying which row in array</span>
<span class="sd"> corresponds to X, Y, and Z. For example:: X = [(0, -1)], Y = [(1,</span>
<span class="sd"> 0)], Z = [(1, -1), (0, -2)] yields an array of shape (5, T) and</span>
<span class="sd"> 0)], Z = [(1, -1), (0, -2)] yields an array of shape (4, T) and</span>
<span class="sd"> xyz is xyz = numpy.array([0,1,2,2]) If return_cleaned_xyz is</span>
<span class="sd"> True, also outputs the cleaned XYZ lists.</span>

Expand Down Expand Up @@ -1017,13 +1017,13 @@ <h1>Source code for tigramite.data_processing</h1><div class="highlight"><pre>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="c1"># Default maximum lag and node ID</span>
<span class="n">max_time_lag</span> <span class="o">=</span> <span class="mi">0</span>
<span class="n">max_node_id</span> <span class="o">=</span> <span class="mi">0</span>
<span class="n">max_node_id</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">parents_neighbors_coeffs</span><span class="o">.</span><span class="n">keys</span><span class="p">())</span> <span class="o">-</span> <span class="mi">1</span>
<span class="c1"># Iterate through the keys in parents_neighbors_coeffs</span>
<span class="k">for</span> <span class="n">j</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">tau</span><span class="p">,</span> <span class="n">_</span> <span class="ow">in</span> <span class="n">_iter_coeffs</span><span class="p">(</span><span class="n">parents_neighbors_coeffs</span><span class="p">):</span>
<span class="c1"># Find max lag time</span>
<span class="n">max_time_lag</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">max_time_lag</span><span class="p">,</span> <span class="nb">abs</span><span class="p">(</span><span class="n">tau</span><span class="p">))</span>
<span class="c1"># Find the max node ID</span>
<span class="n">max_node_id</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">max_node_id</span><span class="p">,</span> <span class="n">j</span><span class="p">)</span>
<span class="c1"># max_node_id = max(max_node_id, j)</span>
<span class="c1"># Return these values</span>
<span class="k">return</span> <span class="n">max_time_lag</span><span class="p">,</span> <span class="n">max_node_id</span>

Expand Down Expand Up @@ -1483,7 +1483,7 @@ <h1>Source code for tigramite.data_processing</h1><div class="highlight"><pre>
<span class="n">noises</span> <span class="o">=</span> <span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">]</span>
<span class="n">data</span><span class="p">,</span> <span class="n">nonstat</span> <span class="o">=</span> <span class="n">structural_causal_process</span><span class="p">(</span><span class="n">links</span><span class="p">,</span>
<span class="n">T</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">noises</span><span class="o">=</span><span class="n">noises</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
</pre></div>

</div>
Expand Down
48 changes: 30 additions & 18 deletions docs/_build/html/_modules/tigramite/plotting.html

Large diffs are not rendered by default.

177 changes: 68 additions & 109 deletions docs/_build/html/index.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion docs/_build/html/searchindex.js

Large diffs are not rendered by default.

10 changes: 5 additions & 5 deletions docs/_modules/tigramite/data_processing.html
Original file line number Diff line number Diff line change
Expand Up @@ -206,10 +206,10 @@ <h1>Source code for tigramite.data_processing</h1><div class="highlight"><pre>

<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> array, xyz [,XYZ] : Tuple of data array of shape (dim, T) and xyz</span>
<span class="sd"> array, xyz [,XYZ] : Tuple of data array of shape (dim, time) and xyz</span>
<span class="sd"> identifier array of shape (dim,) identifying which row in array</span>
<span class="sd"> corresponds to X, Y, and Z. For example:: X = [(0, -1)], Y = [(1,</span>
<span class="sd"> 0)], Z = [(1, -1), (0, -2)] yields an array of shape (5, T) and</span>
<span class="sd"> 0)], Z = [(1, -1), (0, -2)] yields an array of shape (4, T) and</span>
<span class="sd"> xyz is xyz = numpy.array([0,1,2,2]) If return_cleaned_xyz is</span>
<span class="sd"> True, also outputs the cleaned XYZ lists.</span>

Expand Down Expand Up @@ -1017,13 +1017,13 @@ <h1>Source code for tigramite.data_processing</h1><div class="highlight"><pre>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="c1"># Default maximum lag and node ID</span>
<span class="n">max_time_lag</span> <span class="o">=</span> <span class="mi">0</span>
<span class="n">max_node_id</span> <span class="o">=</span> <span class="mi">0</span>
<span class="n">max_node_id</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">parents_neighbors_coeffs</span><span class="o">.</span><span class="n">keys</span><span class="p">())</span> <span class="o">-</span> <span class="mi">1</span>
<span class="c1"># Iterate through the keys in parents_neighbors_coeffs</span>
<span class="k">for</span> <span class="n">j</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">tau</span><span class="p">,</span> <span class="n">_</span> <span class="ow">in</span> <span class="n">_iter_coeffs</span><span class="p">(</span><span class="n">parents_neighbors_coeffs</span><span class="p">):</span>
<span class="c1"># Find max lag time</span>
<span class="n">max_time_lag</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">max_time_lag</span><span class="p">,</span> <span class="nb">abs</span><span class="p">(</span><span class="n">tau</span><span class="p">))</span>
<span class="c1"># Find the max node ID</span>
<span class="n">max_node_id</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">max_node_id</span><span class="p">,</span> <span class="n">j</span><span class="p">)</span>
<span class="c1"># max_node_id = max(max_node_id, j)</span>
<span class="c1"># Return these values</span>
<span class="k">return</span> <span class="n">max_time_lag</span><span class="p">,</span> <span class="n">max_node_id</span>

Expand Down Expand Up @@ -1483,7 +1483,7 @@ <h1>Source code for tigramite.data_processing</h1><div class="highlight"><pre>
<span class="n">noises</span> <span class="o">=</span> <span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">]</span>
<span class="n">data</span><span class="p">,</span> <span class="n">nonstat</span> <span class="o">=</span> <span class="n">structural_causal_process</span><span class="p">(</span><span class="n">links</span><span class="p">,</span>
<span class="n">T</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">noises</span><span class="o">=</span><span class="n">noises</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
</pre></div>

</div>
Expand Down
Loading