Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: Optimised writes #44

Merged
merged 6 commits into from
Nov 28, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,8 @@
## 1.2.0 [unreleased]

### Features
1. [#44](https://github.com/influxdata/influxdb-client-python/pull/44): Optimized serialization into LineProtocol, Clarified how to use client for import large amount of data

### API
1. [#42](https://github.com/influxdata/influxdb-client-python/pull/42): Updated swagger to latest version

Expand Down
22 changes: 18 additions & 4 deletions README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -428,6 +428,8 @@ Examples
How to efficiently import large dataset
"""""""""""""""""""""""""""""""""""""""

The following example shows how to import dataset with dozen megabytes.
If you would like to import gigabytes of data then use our multiprocessing example: `import_data_set_multiprocessing.py <https://github.com/influxdata/influxdb-client-python/blob/master/examples/import_data_set_multiprocessing.py>`_ for use a full capability of your hardware.

* sources - `import_data_set.py <https://github.com/influxdata/influxdb-client-python/blob/master/examples/import_data_set.py>`_

Expand All @@ -441,7 +443,6 @@ How to efficiently import large dataset

from collections import OrderedDict
from csv import DictReader
from datetime import datetime

import rx
from rx import operators as ops
Expand All @@ -466,13 +467,26 @@ How to efficiently import large dataset
:param row: the row of CSV file
:return: Parsed csv row to [Point]
"""

"""
For better performance is sometimes useful directly create a LineProtocol to avoid unnecessary escaping overhead:
"""
# from pytz import UTC
# import ciso8601
# from influxdb_client.client.write.point import EPOCH
#
# time = (UTC.localize(ciso8601.parse_datetime(row["Date"])) - EPOCH).total_seconds() * 1e9
# return f"financial-analysis,type=vix-daily" \
# f" close={float(row['VIX Close'])},high={float(row['VIX High'])},low={float(row['VIX Low'])},open={float(row['VIX Open'])} " \
# f" {int(time)}"

return Point("financial-analysis") \
.tag("type", "vix-daily") \
.field("open", float(row['VIX Open'])) \
.field("high", float(row['VIX High'])) \
.field("low", float(row['VIX Low'])) \
.field("close", float(row['VIX Close'])) \
.time(datetime.strptime(row['Date'], '%Y-%m-%d'))
.time(row['Date'])


"""
Expand All @@ -485,9 +499,9 @@ How to efficiently import large dataset
client = InfluxDBClient(url="http://localhost:9999", token="my-token", org="my-org", debug=True)

"""
Create client that writes data in batches with 500 items.
Create client that writes data in batches with 50_000 items.
"""
write_api = client.write_api(write_options=WriteOptions(batch_size=500, jitter_interval=1_000))
write_api = client.write_api(write_options=WriteOptions(batch_size=50_000, flush_interval=10_000))

"""
Write data into InfluxDB
Expand Down
20 changes: 16 additions & 4 deletions examples/import_data_set.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@

from collections import OrderedDict
from csv import DictReader
from datetime import datetime

import rx
from rx import operators as ops
Expand All @@ -32,13 +31,26 @@ def parse_row(row: OrderedDict):
:param row: the row of CSV file
:return: Parsed csv row to [Point]
"""

"""
For better performance is sometimes useful directly create a LineProtocol to avoid unnecessary escaping overhead:
"""
# from pytz import UTC
# import ciso8601
# from influxdb_client.client.write.point import EPOCH
#
# time = (UTC.localize(ciso8601.parse_datetime(row["Date"])) - EPOCH).total_seconds() * 1e9
# return f"financial-analysis,type=vix-daily" \
# f" close={float(row['VIX Close'])},high={float(row['VIX High'])},low={float(row['VIX Low'])},open={float(row['VIX Open'])} " \
# f" {int(time)}"

return Point("financial-analysis") \
.tag("type", "vix-daily") \
.field("open", float(row['VIX Open'])) \
.field("high", float(row['VIX High'])) \
.field("low", float(row['VIX Low'])) \
.field("close", float(row['VIX Close'])) \
.time(datetime.strptime(row['Date'], '%Y-%m-%d'))
.time(row['Date'])


"""
Expand All @@ -51,9 +63,9 @@ def parse_row(row: OrderedDict):
client = InfluxDBClient(url="http://localhost:9999", token="my-token", org="my-org", debug=True)

"""
Create client that writes data in batches with 500 items.
Create client that writes data in batches with 50_000 items.
"""
write_api = client.write_api(write_options=WriteOptions(batch_size=500, jitter_interval=1_000))
write_api = client.write_api(write_options=WriteOptions(batch_size=50_000, flush_interval=10_000))

"""
Write data into InfluxDB
Expand Down
219 changes: 219 additions & 0 deletions examples/import_data_set_multiprocessing.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,219 @@
"""
Import public NYC taxi and for-hire vehicle (Uber, Lyft, etc.) trip data into InfluxDB 2.0

https://github.com/toddwschneider/nyc-taxi-data
"""
import concurrent.futures
import io
import multiprocessing
from collections import OrderedDict
from csv import DictReader
from datetime import datetime
from multiprocessing import Value
from urllib.request import urlopen

import rx
from rx import operators as ops

from influxdb_client import Point, InfluxDBClient, WriteOptions
from influxdb_client.client.write_api import WriteType


class ProgressTextIOWrapper(io.TextIOWrapper):
"""
TextIOWrapper that store progress of read.
"""
def __init__(self, *args, **kwargs):
io.TextIOWrapper.__init__(self, *args, **kwargs)
self.progress = None
pass

def readline(self, *args, **kwarg) -> str:
readline = super().readline(*args, **kwarg)
self.progress.value += len(readline)
return readline


class InfluxDBWriter(multiprocessing.Process):
"""
Writer that writes data in batches with 50_000 items.
"""
def __init__(self, queue):
multiprocessing.Process.__init__(self)
self.queue = queue
self.client = InfluxDBClient(url="http://localhost:9999", token="my-token", org="my-org", debug=False)
self.write_api = self.client.write_api(
write_options=WriteOptions(write_type=WriteType.batching, batch_size=50_000, flush_interval=10_000))

def run(self):
while True:
next_task = self.queue.get()
if next_task is None:
# Poison pill means terminate
self.terminate()
self.queue.task_done()
break
self.write_api.write(org="my-org", bucket="my-bucket", record=next_task)
self.queue.task_done()

def terminate(self) -> None:
proc_name = self.name
print()
print('Writer: flushing data...')
self.write_api.__del__()
self.client.__del__()
print('Writer: closed'.format(proc_name))


def parse_row(row: OrderedDict):
"""Parse row of CSV file into Point with structure:

taxi-trip-data,DOLocationID=152,PULocationID=79,dispatching_base_num=B02510 dropoff_datetime="2019-01-01 01:27:24" 1546304267000000000

CSV format:
dispatching_base_num,pickup_datetime,dropoff_datetime,PULocationID,DOLocationID,SR_Flag
B00001,2019-01-01 00:30:00,2019-01-01 02:51:55,,,
B00001,2019-01-01 00:45:00,2019-01-01 00:54:49,,,
B00001,2019-01-01 00:15:00,2019-01-01 00:54:52,,,
B00008,2019-01-01 00:19:00,2019-01-01 00:39:00,,,
B00008,2019-01-01 00:27:00,2019-01-01 00:37:00,,,
B00008,2019-01-01 00:48:00,2019-01-01 01:02:00,,,
B00008,2019-01-01 00:50:00,2019-01-01 00:59:00,,,
B00008,2019-01-01 00:51:00,2019-01-01 00:56:00,,,
B00009,2019-01-01 00:44:00,2019-01-01 00:58:00,,,
B00009,2019-01-01 00:19:00,2019-01-01 00:36:00,,,
B00009,2019-01-01 00:36:00,2019-01-01 00:49:00,,,
B00009,2019-01-01 00:26:00,2019-01-01 00:32:00,,,
...

:param row: the row of CSV file
:return: Parsed csv row to [Point]
"""

return Point("taxi-trip-data") \
.tag("dispatching_base_num", row['dispatching_base_num']) \
.tag("PULocationID", row['PULocationID']) \
.tag("DOLocationID", row['DOLocationID']) \
.tag("SR_Flag", row['SR_Flag']) \
.field("dropoff_datetime", row['dropoff_datetime']) \
.time(row['pickup_datetime']) \
.to_line_protocol()


def parse_rows(rows, total_size):
"""
Parse bunch of CSV rows into LineProtocol

:param total_size: Total size of file
:param rows: CSV rows
:return: List of line protocols
"""
_parsed_rows = list(map(parse_row, rows))

counter_.value += len(_parsed_rows)
if counter_.value % 10_000 == 0:
print('{0:8}{1}'.format(counter_.value, ' - {0:.2f} %'
.format(100 * float(progress_.value) / float(int(total_size))) if total_size else ""))
pass

queue_.put(_parsed_rows)
return None


def init_counter(counter, progress, queue):
"""
Initialize shared counter for display progress
"""
global counter_
counter_ = counter
global progress_
progress_ = progress
global queue_
queue_ = queue


"""
Create multiprocess shared environment
"""
queue_ = multiprocessing.Manager().Queue()
counter_ = Value('i', 0)
progress_ = Value('i', 0)
startTime = datetime.now()

url = "https://s3.amazonaws.com/nyc-tlc/trip+data/fhv_tripdata_2019-01.csv"
# url = "file:///Users/bednar/Developer/influxdata/influxdb-client-python/examples/fhv_tripdata_2019-01.csv"

"""
Open URL and for stream data
"""
response = urlopen(url)
if response.headers:
content_length = response.headers['Content-length']
io_wrapper = ProgressTextIOWrapper(response)
io_wrapper.progress = progress_

"""
Start writer as a new process
"""
writer = InfluxDBWriter(queue_)
writer.start()

"""
Create process pool for parallel encoding into LineProtocol
"""
cpu_count = multiprocessing.cpu_count()
with concurrent.futures.ProcessPoolExecutor(cpu_count, initializer=init_counter,
initargs=(counter_, progress_, queue_)) as executor:
"""
Converts incoming HTTP stream into sequence of LineProtocol
"""
data = rx \
.from_iterable(DictReader(io_wrapper)) \
.pipe(ops.buffer_with_count(10_000),
# Parse 10_000 rows into LineProtocol on subprocess
ops.flat_map(lambda rows: executor.submit(parse_rows, rows, content_length)))

"""
Write data into InfluxDB
"""
data.subscribe(on_next=lambda x: None, on_error=lambda ex: print(f'Unexpected error: {ex}'))

"""
Terminate Writer
"""
queue_.put(None)
queue_.join()

print()
print(f'Import finished in: {datetime.now() - startTime}')
print()

"""
Querying 10 pickups from dispatching 'B00008'
"""
query = 'from(bucket:"my-bucket")' \
'|> range(start: 2019-01-01T00:00:00Z, stop: now()) ' \
'|> filter(fn: (r) => r._measurement == "taxi-trip-data")' \
'|> filter(fn: (r) => r.dispatching_base_num == "B00008")' \
'|> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")' \
'|> rename(columns: {_time: "pickup_datetime"})' \
'|> drop(columns: ["_start", "_stop"])|> limit(n:10, offset: 0)'

client = InfluxDBClient(url="http://localhost:9999", token="my-token", org="my-org", debug=False)
result = client.query_api().query(org="my-org", query=query)

"""
Processing results
"""
print()
print("=== Querying 10 pickups from dispatching 'B00008' ===")
print()
for table in result:
for record in table.records:
print(
f'Dispatching: {record["dispatching_base_num"]} pickup: {record["pickup_datetime"]} dropoff: {record["dropoff_datetime"]}')

"""
Close client
"""
client.__del__()
Loading