Skip to content

imumarfarooq/Dog-Breed-Classifier-using-CNN-Architecture-

Repository files navigation

Dog-Breed-Classifier-using-CNN-Architecture

Project Overview

What’s the breed type of Dog? How can we identify the nature of the Dog? How can we find which breed type of Dog loves ear scratches? Apparently, the notable deep neural networks don’t have all the answers to your questions. Though, it may be answered that permeating question we all ask when meeting a four-legged stranger: How good is that?

Welcome to the Convolutional Neural Networks (CNN) project in the AI Nanodegree! In this project, you will learn how to build a pipeline that can be used within a web or mobile app to process real-world, user-supplied images. Given an image of a dog, your algorithm will identify an estimate of the canine’s breed. If supplied an image of a human, the code will identify the resembling dog breed.

Sample Output

Along with exploring state-of-the-art CNN models for classification, you will make important design decisions about the user experience for your app. Our goal is that by completing this lab, you understand the challenges involved in piecing together a series of models designed to perform various tasks in a data processing pipeline. Each model has its strengths and weaknesses, and engineering a real-world application often involves solving many problems without a perfect answer. Your imperfect solution will nonetheless create a fun user experience!

Project Instructions

Instructions

  1. Clone the repository and navigate to the downloaded folder.
git clone https://github.com/udacity/dog-project.git
cd dog-project
  1. Download the dog dataset. Unzip the folder and place it in the repo, at location path/to/dog-project/dogImages.

  2. Download the human dataset. Unzip the folder and place it in the repo, at location path/to/dog-project/lfw. If you are using a Windows machine, you are encouraged to use 7zip to extract the folder.

  3. Donwload the VGG-16 bottleneck features for the dog dataset. Place it in the repo, at location path/to/dog-project/bottleneck_features.

  4. (Optional) If you plan to install TensorFlow with GPU support on your local machine, follow the guide to install the necessary NVIDIA software on your system. If you are using an EC2 GPU instance, you can skip this step.

  5. (Optional) If you are running the project on your local machine (and not using AWS), create (and activate) a new environment.

    • Linux (to install with GPU support, change requirements/dog-linux.yml to requirements/dog-linux-gpu.yml):
    conda env create -f requirements/dog-linux.yml
    source activate dog-project
    
    • Mac (to install with GPU support, change requirements/dog-mac.yml to requirements/dog-mac-gpu.yml):
    conda env create -f requirements/dog-mac.yml
    source activate dog-project
    

    NOTE: Some Mac users may need to install a different version of OpenCV

    conda install --channel https://conda.anaconda.org/menpo opencv3
    
    • Windows (to install with GPU support, change requirements/dog-windows.yml to requirements/dog-windows-gpu.yml):
    conda env create -f requirements/dog-windows.yml
    activate dog-project
    
  6. (Optional) If you are running the project on your local machine (and not using AWS) and Step 6 throws errors, try this alternative step to create your environment.

    • Linux or Mac (to install with GPU support, change requirements/requirements.txt to requirements/requirements-gpu.txt):
    conda create --name dog-project python=3.5
    source activate dog-project
    pip install -r requirements/requirements.txt
    

    NOTE: Some Mac users may need to install a different version of OpenCV

    conda install --channel https://conda.anaconda.org/menpo opencv3
    
    • Windows (to install with GPU support, change requirements/requirements.txt to requirements/requirements-gpu.txt):
    conda create --name dog-project python=3.5
    activate dog-project
    pip install -r requirements/requirements.txt
    
  7. (Optional) If you are using AWS, install Tensorflow.

sudo python3 -m pip install -r requirements/requirements-gpu.txt
  1. Switch Keras backend to TensorFlow.

    • Linux or Mac:
       KERAS_BACKEND=tensorflow python -c "from keras import backend"
      
    • Windows:
       set KERAS_BACKEND=tensorflow
       python -c "from keras import backend"
      
  2. (Optional) If you are running the project on your local machine (and not using AWS), create an IPython kernel for the dog-project environment.

python -m ipykernel install --user --name dog-project --display-name "dog-project"
  1. Open the notebook.
jupyter notebook dog_app.ipynb
  1. (Optional) If you are running the project on your local machine (and not using AWS), before running code, change the kernel to match the dog-project environment by using the drop-down menu (Kernel > Change kernel > dog-project). Then, follow the instructions in the notebook.

Model Architecture

Sample Output

Conclusion

we’ve tried to build a CNN to classify the dog breeds. With the help of Keras, it’s easy for us to not only make the CNN model but also test different transfer learning pre-trained models to test our model performance and get better accuracy to classify our objects. In this, blog post we tried CNN from scratch and have to use VGG-16, Resnet50, and Inception transfer learning models to test their accuracy into our test data. And, we also get an accuracy of 80%. We also discussed “how to improve our model performance ”, for further details you have to check my Medium Article