Note
Thank you for your interest in our work. Currently, our paper is under review, and this repository contains only the test code. We are actively working to prepare the complete codebase, which will include both training and testing phases. We will release the full code soon.
- python == 3.8.15
- torch == 1.10.0
- torchvision == 0.11.0
- cuda == 11.4
- opencv == 4.6.0
Please download the following datasets:
UVOS datasets:
- YouTube-VOS: YouTube-VOS
- DAVIS: DAVIS
- YouTube-Objects: YouTube-Objects
- FBMS: FBMS
- LongVideos: LongVideos
VSOD datasets:
- DAVIS: same as UVOS.
- DAVSOD: DAVSOD
- SegTrack-V2: SegTrack-V2
- ViSal: ViSal
To quickly reproduce our results, we upload the processed data to Google Drive and Baidu Disk(code: qcbh).
stage | model link |
---|---|
pre-train | Google Drive, Baidu Disk(code: qcbh) |
fine-tuning | Google Drive, Baidu Disk(code: qcbh) |
To reproduct the results we reported in paper, please download the corresponding models and run test script.
Waiting
Download the trained MTNet, and placing it in the ./saves
or anywhere.
python test.py [test_model] [task_name] [test_dataset] [output_dir]
Testing for UVOS task:
python test.py --test_model ./saves/mtnet.pth --task_name UVOS --test_dataset DAVIS16 --output_dir output
Testing for VSOD task:
python test.py --test_model ./saves/mtnet.pth --task_name VSOD --test_dataset DAVIS16 --output_dir output
Precomputed outputs - Google Drive
Precomputed outputs - Baidu Disk(code: qcbh)
Evaluation for UVOS results:
python test_scripts/test_for_davis.py --gt_path ../data/DAVIS16/val/mask --result_path output/MTNet/UVOS/DAVIS16/
Evaluation for VSOD results:
python test_scripts/test_vsod/main.py --method MTNet --dataset DAVIS16 --gt_dir test_scripts/test_vsod/gt/ --pred_dir test_scripts/test_vsod/results/
Specify the dataset in visualize.py
, then run:
python visualize.py
This repository owes its existence to the exceptional contributions of other projects:
- STCN: https://github.com/hkchengrex/STCN
- AOT: https://github.com/yoxu515/aot-benchmark
- HFAN: https://github.com/NUST-Machine-Intelligence-Laboratory/HFAN
- FSNet: https://github.com/GewelsJI/FSNet
- AMCNet: https://github.com/isyangshu/AMC-Net
- DAVSOD: https://github.com/DengPingFan/DAVSOD
Many thanks to their invaluable contributions.