Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

correct formatting of star sign in kto_trainer.mdx #2031

Merged
merged 3 commits into from
Sep 8, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions docs/source/kto_trainer.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@ For a detailed example have a look at the `examples/scripts/kto.py` script. At a
The `beta` refers to the hyperparameter of the implicit reward, and the dataset contains the 3 entries listed above. Note that the `model` and `ref_model` need to have the same architecture (ie decoder only or encoder-decoder).

The `desirable_weight` and `undesirable_weight` refer to the weights placed on the losses for desirable/positive and undesirable/negative examples.
By default, they are both 1. However, if you have more of one or the other, then you should upweight the less common type such that the ratio of (`desirable_weight` * number of positives) to (`undesirable_weight` * number of negatives) is in the range 1:1 to 4:3.
By default, they are both 1. However, if you have more of one or the other, then you should upweight the less common type such that the ratio of (`desirable_weight` \\(\times\\) number of positives) to (`undesirable_weight` \\(\times\\) number of negatives) is in the range 1:1 to 4:3.

```py
training_args = KTOConfig(
Expand Down Expand Up @@ -99,4 +99,4 @@ To scale how much the auxiliary loss contributes to the total loss, use the hype

## KTOConfig

[[autodoc]] KTOConfig
[[autodoc]] KTOConfig
Loading