Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Consistent use of trust_remote_code #1806

Merged
merged 3 commits into from
Jul 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 13 additions & 5 deletions examples/scripts/bco.py
Original file line number Diff line number Diff line change
Expand Up @@ -166,10 +166,16 @@ def mean_pooling(model_output, attention_mask):
kto_args.gradient_checkpointing_kwargs = {"use_reentrant": True}

# Load a pretrained model
model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path)
model_ref = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
)
model_ref = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
)

tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token

Expand All @@ -193,13 +199,15 @@ def format_dataset(example):
accelerator = Accelerator()
embedding_model = AutoModel.from_pretrained(
"nomic-ai/nomic-embed-text-v1.5",
trust_remote_code=True,
trust_remote_code=model_args.trust_remote_code,
safe_serialization=True,
torch_dtype=torch.bfloat16,
device_map="auto",
)
embedding_model = accelerator.prepare_model(embedding_model)
embedding_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
embedding_tokenizer = AutoTokenizer.from_pretrained(
"bert-base-uncased", trust_remote_code=model_args.trust_remote_code
)
embedding_func = partial(
embed_prompt,
model=embedding_model,
Expand Down
11 changes: 8 additions & 3 deletions examples/scripts/chat.py
Original file line number Diff line number Diff line change
Expand Up @@ -211,19 +211,24 @@ def parse_settings(user_input, current_args, interface):


def load_model_and_tokenizer(args):
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, revision=args.model_revision)
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path,
revision=args.model_revision,
trust_remote_code=args.trust_remote_code,
)

torch_dtype = args.torch_dtype if args.torch_dtype in ["auto", None] else getattr(torch, args.torch_dtype)
quantization_config = get_quantization_config(args)
model_kwargs = dict(
revision=args.model_revision,
trust_remote_code=args.trust_remote_code,
attn_implementation=args.attn_implementation,
torch_dtype=torch_dtype,
device_map="auto",
quantization_config=quantization_config,
)
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, **model_kwargs)
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path, trust_remote_code=args.trust_remote_code, **model_kwargs
)

if getattr(model, "hf_device_map", None) is None:
model = model.to(args.device)
Expand Down
8 changes: 6 additions & 2 deletions examples/scripts/cpo.py
Original file line number Diff line number Diff line change
Expand Up @@ -76,8 +76,12 @@ class ScriptArguments:
################
# Model & Tokenizer
################
model = AutoModelForCausalLM.from_pretrained(model_config.model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(model_config.model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code
)
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token

Expand Down
13 changes: 9 additions & 4 deletions examples/scripts/dpo.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,20 +106,25 @@
quantization_config = get_quantization_config(model_config)
model_kwargs = dict(
revision=model_config.model_revision,
trust_remote_code=model_config.trust_remote_code,
attn_implementation=model_config.attn_implementation,
torch_dtype=torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
model = AutoModelForCausalLM.from_pretrained(model_config.model_name_or_path, **model_kwargs)
model = AutoModelForCausalLM.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, **model_kwargs
)
peft_config = get_peft_config(model_config)
if peft_config is None:
model_ref = AutoModelForCausalLM.from_pretrained(model_config.model_name_or_path, **model_kwargs)
model_ref = AutoModelForCausalLM.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, **model_kwargs
)
else:
model_ref = None
tokenizer = AutoTokenizer.from_pretrained(model_config.model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
if tokenizer.chat_template is None:
Expand Down
12 changes: 9 additions & 3 deletions examples/scripts/kto.py
Original file line number Diff line number Diff line change
Expand Up @@ -76,10 +76,16 @@ class ScriptArguments:
script_args, kto_args, model_args = parser.parse_args_into_dataclasses()

# Load a pretrained model
model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path)
model_ref = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
)
model_ref = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
)

tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token

Expand Down
8 changes: 6 additions & 2 deletions examples/scripts/orpo.py
Original file line number Diff line number Diff line change
Expand Up @@ -76,8 +76,12 @@ class ScriptArguments:
################
# Model & Tokenizer
################
model = AutoModelForCausalLM.from_pretrained(model_config.model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(model_config.model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code
)
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token

Expand Down
18 changes: 13 additions & 5 deletions examples/scripts/ppo/ppo.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,15 +53,23 @@
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path,
padding_side="left",
trust_remote_code=True,
trust_remote_code=model_config.trust_remote_code,
)
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
if tokenizer.chat_template is None:
tokenizer.chat_template = SIMPLE_QUERY_CHAT_TEMPLATE
value_model = AutoModelForSequenceClassification.from_pretrained(config.reward_model_path, num_labels=1)
reward_model = AutoModelForSequenceClassification.from_pretrained(config.reward_model_path, num_labels=1)
ref_policy = AutoModelForCausalLM.from_pretrained(config.sft_model_path)
policy = AutoModelForCausalLM.from_pretrained(config.sft_model_path)
value_model = AutoModelForSequenceClassification.from_pretrained(
config.reward_model_path, trust_remote_code=model_config.trust_remote_code, num_labels=1
)
reward_model = AutoModelForSequenceClassification.from_pretrained(
config.reward_model_path, trust_remote_code=model_config.trust_remote_code, num_labels=1
)
ref_policy = AutoModelForCausalLM.from_pretrained(
config.sft_model_path, trust_remote_code=model_config.trust_remote_code
)
policy = AutoModelForCausalLM.from_pretrained(
config.sft_model_path, trust_remote_code=model_config.trust_remote_code
)
################
# Dataset
################
Expand Down
18 changes: 13 additions & 5 deletions examples/scripts/ppo/ppo_tldr.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,15 +57,23 @@
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path,
padding_side="left",
trust_remote_code=True,
trust_remote_code=model_config.trust_remote_code,
)
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
if tokenizer.chat_template is None:
tokenizer.chat_template = SIMPLE_QUERY_CHAT_TEMPLATE
value_model = AutoModelForSequenceClassification.from_pretrained(config.reward_model_path, num_labels=1)
reward_model = AutoModelForSequenceClassification.from_pretrained(config.reward_model_path, num_labels=1)
ref_policy = AutoModelForCausalLM.from_pretrained(config.sft_model_path)
policy = AutoModelForCausalLM.from_pretrained(config.sft_model_path)
value_model = AutoModelForSequenceClassification.from_pretrained(
config.reward_model_path, trust_remote_code=model_config.trust_remote_code, num_labels=1
)
reward_model = AutoModelForSequenceClassification.from_pretrained(
config.reward_model_path, trust_remote_code=model_config.trust_remote_code, num_labels=1
)
ref_policy = AutoModelForCausalLM.from_pretrained(
config.sft_model_path, trust_remote_code=model_config.trust_remote_code
)
policy = AutoModelForCausalLM.from_pretrained(
config.sft_model_path, trust_remote_code=model_config.trust_remote_code
)
################
# Dataset
################
Expand Down
7 changes: 4 additions & 3 deletions examples/scripts/reward_modeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,13 +57,14 @@
quantization_config = get_quantization_config(model_config)
model_kwargs = dict(
revision=model_config.model_revision,
trust_remote_code=model_config.trust_remote_code,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
tokenizer = AutoTokenizer.from_pretrained(model_config.model_name_or_path, use_fast=True)
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, use_fast=True
)
model = AutoModelForSequenceClassification.from_pretrained(
model_config.model_name_or_path, num_labels=1, **model_kwargs
model_config.model_name_or_path, num_labels=1, trust_remote_code=model_config.trust_remote_code, **model_kwargs
)

if model_config.lora_task_type != "SEQ_CLS":
Expand Down
14 changes: 10 additions & 4 deletions examples/scripts/rloo/rloo.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,14 +55,20 @@
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path,
padding_side="left",
trust_remote_code=True,
trust_remote_code=model_config.trust_remote_code,
)
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
if tokenizer.chat_template is None:
tokenizer.chat_template = SIMPLE_QUERY_CHAT_TEMPLATE
reward_model = AutoModelForSequenceClassification.from_pretrained(config.reward_model_path, num_labels=1)
ref_policy = AutoModelForCausalLM.from_pretrained(config.sft_model_path)
policy = AutoModelForCausalLM.from_pretrained(config.sft_model_path)
reward_model = AutoModelForSequenceClassification.from_pretrained(
config.reward_model_path, trust_remote_code=model_config.trust_remote_code, num_labels=1
)
ref_policy = AutoModelForCausalLM.from_pretrained(
config.sft_model_path, trust_remote_code=model_config.trust_remote_code
)
policy = AutoModelForCausalLM.from_pretrained(
config.sft_model_path, trust_remote_code=model_config.trust_remote_code
)
################
# Dataset
################
Expand Down
14 changes: 10 additions & 4 deletions examples/scripts/rloo/rloo_tldr.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,14 +59,20 @@
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path,
padding_side="left",
trust_remote_code=True,
trust_remote_code=model_config.trust_remote_code,
)
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
if tokenizer.chat_template is None:
tokenizer.chat_template = SIMPLE_QUERY_CHAT_TEMPLATE
reward_model = AutoModelForSequenceClassification.from_pretrained(config.reward_model_path, num_labels=1)
ref_policy = AutoModelForCausalLM.from_pretrained(config.sft_model_path)
policy = AutoModelForCausalLM.from_pretrained(config.sft_model_path)
reward_model = AutoModelForSequenceClassification.from_pretrained(
config.reward_model_path, trust_remote_code=model_config.trust_remote_code, num_labels=1
)
ref_policy = AutoModelForCausalLM.from_pretrained(
config.sft_model_path, trust_remote_code=model_config.trust_remote_code
)
policy = AutoModelForCausalLM.from_pretrained(
config.sft_model_path, trust_remote_code=model_config.trust_remote_code
)
################
# Dataset
################
Expand Down
4 changes: 3 additions & 1 deletion examples/scripts/sft.py
Original file line number Diff line number Diff line change
Expand Up @@ -108,7 +108,9 @@
quantization_config=quantization_config,
)
training_args.model_init_kwargs = model_kwargs
tokenizer = AutoTokenizer.from_pretrained(model_config.model_name_or_path, use_fast=True)
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, use_fast=True
)
tokenizer.pad_token = tokenizer.eos_token

################
Expand Down
13 changes: 9 additions & 4 deletions examples/scripts/vsft_llava.py
Original file line number Diff line number Diff line change
Expand Up @@ -125,18 +125,23 @@
quantization_config = get_quantization_config(model_config)
model_kwargs = dict(
revision=model_config.model_revision,
trust_remote_code=model_config.trust_remote_code,
attn_implementation=model_config.attn_implementation,
torch_dtype=torch_dtype,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
tokenizer = AutoTokenizer.from_pretrained(model_config.model_name_or_path, use_fast=True)
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, use_fast=True
)
tokenizer.chat_template = LLAVA_CHAT_TEMPLATE
processor = AutoProcessor.from_pretrained(model_config.model_name_or_path)
processor = AutoProcessor.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code
)
processor.tokenizer = tokenizer

model = LlavaForConditionalGeneration.from_pretrained(model_config.model_name_or_path, **model_kwargs)
model = LlavaForConditionalGeneration.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, **model_kwargs
)

################
# Create a data collator to encode text and image pairs
Expand Down
Loading