Skip to content

Commit

Permalink
Improve DPO/loss doc (#1929)
Browse files Browse the repository at this point in the history
Co-authored-by: Quentin Gallouédec <[email protected]>
  • Loading branch information
qgallouedec and qgallouedec authored Aug 14, 2024
1 parent c1b272f commit b0372e6
Show file tree
Hide file tree
Showing 2 changed files with 55 additions and 45 deletions.
30 changes: 15 additions & 15 deletions docs/source/dpo_trainer.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ The DPO trainer expects a very specific format for the dataset. Since the model
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/rlhf-antropic-example.png", width="50%">
</div>

Therefore the final dataset object should contain these 3 entries if you use the default `DPODataCollatorWithPadding` data collator. The entries should be named:
Therefore the final dataset object should contain these 3 entries if you use the default [`DPODataCollatorWithPadding`] data collator. The entries should be named:

- `prompt`
- `chosen`
Expand Down Expand Up @@ -70,7 +70,7 @@ dpo_dataset_dict = {

where the `prompt` contains the context inputs, `chosen` contains the corresponding chosen responses and `rejected` contains the corresponding negative (rejected) responses. As can be seen a prompt can have multiple responses and this is reflected in the entries being repeated in the dictionary's value arrays.

`DPOTrainer` can be used to fine-tune visual language models (VLMs). In this case, the dataset must also contain the key `images`, and the trainer's `tokenizer` is the VLM's `processor`. For example, for Idefics2, the processor expects the dataset to have the following format:
[`DPOTrainer`] can be used to fine-tune visual language models (VLMs). In this case, the dataset must also contain the key `images`, and the trainer's `tokenizer` is the VLM's `processor`. For example, for Idefics2, the processor expects the dataset to have the following format:

Note: Currently, VLM support is exclusive to Idefics2 and does not extend to other VLMs.

Expand Down Expand Up @@ -101,7 +101,7 @@ The DPO trainer expects a model of `AutoModelForCausalLM` or `AutoModelForVision

## Using the `DPOTrainer`

For a detailed example have a look at the `examples/scripts/dpo.py` script. At a high level we need to initialize the `DPOTrainer` with a `model` we wish to train, a reference `ref_model` which we will use to calculate the implicit rewards of the preferred and rejected response, the `beta` refers to the hyperparameter of the implicit reward, and the dataset contains the 3 entries listed above. Note that the `model` and `ref_model` need to have the same architecture (ie decoder only or encoder-decoder).
For a detailed example have a look at the `examples/scripts/dpo.py` script. At a high level we need to initialize the [`DPOTrainer`] with a `model` we wish to train, a reference `ref_model` which we will use to calculate the implicit rewards of the preferred and rejected response, the `beta` refers to the hyperparameter of the implicit reward, and the dataset contains the 3 entries listed above. Note that the `model` and `ref_model` need to have the same architecture (ie decoder only or encoder-decoder).

```py
training_args = DPOConfig(
Expand All @@ -126,27 +126,27 @@ Note that the `beta` is the temperature parameter for the DPO loss, typically so

## Loss functions

Given the preference data, we can fit a binary classifier according to the Bradley-Terry model and in fact the DPO authors propose the sigmoid loss on the normalized likelihood via the `logsigmoid` to fit a logistic regression.
Given the preference data, we can fit a binary classifier according to the Bradley-Terry model and in fact the [DPO](https://huggingface.co/papers/2305.18290) authors propose the sigmoid loss on the normalized likelihood via the `logsigmoid` to fit a logistic regression. To use this loss, set the `loss_type="sigmoid"` (default) in the [`DPOConfig`].

The [RSO](https://huggingface.co/papers/2309.06657) authors propose to use a hinge loss on the normalized likelihood from the [SLiC](https://huggingface.co/papers/2305.10425) paper. The `DPOTrainer` can be switched to this loss via the `loss_type="hinge"` argument and the `beta` in this case is the reciprocal of the margin.
The [RSO](https://huggingface.co/papers/2309.06657) authors propose to use a hinge loss on the normalized likelihood from the [SLiC](https://huggingface.co/papers/2305.10425) paper. To use this loss, set the `loss_type="hinge"` in the [`DPOConfig`]. In this case, the `beta` is the reciprocal of the margin.

The [IPO](https://huggingface.co/papers/2310.12036) authors provide a deeper theoretical understanding of the DPO algorithms and identify an issue with overfitting and propose an alternative loss which can be used via the `loss_type="ipo"` argument to the trainer. Note that the `beta` parameter is the reciprocal of the gap between the log-likelihood ratios of the chosen vs the rejected completion pair and thus the smaller the `beta` the larger this gaps is. As per the paper the loss is averaged over log-likelihoods of the completion (unlike DPO which is summed only).
The [IPO](https://huggingface.co/papers/2310.12036) authors provide a deeper theoretical understanding of the DPO algorithms and identify an issue with overfitting and propose an alternative loss. To use the loss set the `loss_type="ipo"` in the [`DPOConfig`]. In this case, the `beta` is the reciprocal of the gap between the log-likelihood ratios of the chosen vs the rejected completion pair and thus the smaller the `beta` the larger this gaps is. As per the paper the loss is averaged over log-likelihoods of the completion (unlike DPO which is summed only).

The [cDPO](https://ericmitchell.ai/cdpo.pdf) is a tweak on the DPO loss where we assume that the preference labels are noisy with some probability that can be passed to the `DPOTrainer` via `label_smoothing` argument (between 0 and 0.5) and then a conservative DPO loss is used. Pass the `label_smoothing` argument to the trainer to use it (default is 0).
The [cDPO](https://ericmitchell.ai/cdpo.pdf) is a tweak on the DPO loss where we assume that the preference labels are noisy with some probability. In this approach, the `label_smoothing` parameter in the [`DPOConfig`] is used to model the probability of existing label noise. To apply this conservative loss, set `label_smoothing` to a value greater than 0.0 (between 0.0 and 0.5; the default is 0.0).

The [Robust DPO](https://huggingface.co/papers/2403.00409) authors propose an unbiased estimate of the DPO loss that is robust to preference noise in the data. Like in cDPO, assume that the preference labels are noisy with some probability that can be passed to the `DPOTrainer` via `label_smoothing` argument (between 0 and 0.5). Use `loss_type="robust"` to the trainer to use it.
The [EXO](https://huggingface.co/papers/2402.00856) authors propose to minimize the reverse KL instead of the negative log-sigmoid loss of DPO which corresponds to forward KL. To use the loss set the `loss_type="exo"` in the [`DPOConfig`]. Setting non-zero `label_smoothing` (default `1e-3`) leads to a simplified version of EXO on pair-wise preferences (see Eqn. (16) of the [EXO paper](https://huggingface.co/papers/2402.00856)). The full version of EXO uses `K>2` completions generated by the SFT policy, which becomes an unbiased estimator of the PPO objective (up to a constant) when `K` is sufficiently large.

The [EXO](https://huggingface.co/papers/2402.00856) authors propose to minimize the reverse KL instead of the negative log-sigmoid loss of DPO which corresponds to forward KL. Setting `loss_type`=`exo_pair` and a non-zero `label_smoothing` (default `1e-3`) leads to a simplified version of EXO on pair-wise preferences (see Eqn. (16) of the [EXO paper](https://huggingface.co/papers/2402.00856)). The full version of EXO uses `K>2` completions generated by the SFT policy, which becomes an unbiased estimator of the PPO objective (up to a constant) when `K` is sufficiently large.
The [NCA](https://huggingface.co/papers/2402.05369) authors shows that NCA optimizes the absolute likelihood for each response rather than the relative likelihood. To use the loss set the `loss_type="nca"` in the [`DPOConfig`].

The [BCO](https://huggingface.co/papers/2404.04656) authors train a binary classifier whose logit serves as a reward so that the classifier maps {prompt, chosen completion} pairs to 1 and {prompt, rejected completion} pairs to 0. The `DPOTrainer` can be switched to this loss via the `loss_type="bco_pair"` argument.
The [Robust DPO](https://huggingface.co/papers/2403.00409) authors propose an unbiased estimate of the DPO loss that is robust to preference noise in the data. Like in cDPO, it assumes that the preference labels are noisy with some probability. In this approach, the `label_smoothing` parameter in the [`DPOConfig`] is used to model the probability of existing label noise. To apply this conservative loss, set `label_smoothing` to a value greater than 0.0 (between 0.0 and 0.5; the default is 0.0) and set the `loss_type="robust_dpo"` in the [`DPOConfig`].

The [SPPO](https://huggingface.co/papers/2405.00675) authors claim that SPPO is capable of solving the Nash equilibrium iteratively by pushing the chosen rewards to be as large as 1/2 and the rejected rewards to be as small as -1/2 and can alleviate data sparsity issues. The implementation using loss_type="sppo_hard" approximates this algorithm by employing hard label probabilities, assigning 1 to the winner and 0 to the loser.
The [BCO](https://huggingface.co/papers/2404.04656) authors train a binary classifier whose logit serves as a reward so that the classifier maps {prompt, chosen completion} pairs to 1 and {prompt, rejected completion} pairs to 0. To use this loss, set the `loss_type="bco"` in the [`DPOConfig`].

The [NCA](https://huggingface.co/papers/2402.05369) authors shows that NCA optimizes the absolute likelihood for each response rather than the relative likelihood.
The [TR-DPO](https://huggingface.co/papers/2404.09656) paper suggests syncing the reference model weights after every `ref_model_sync_steps` steps of SGD with weight `ref_model_mixup_alpha` during DPO training. To toggle this callback use the `sync_ref_model=True` in the [`DPOConfig`].

The [TR-DPO](https://huggingface.co/papers/2404.09656) paper suggests syncing the reference model weights after every `ref_model_sync_steps` steps of SGD with weight `ref_model_mixup_alpha` during DPO training. To toggle this callback use the `sync_ref_model` flag in the `DPOConfig`.
The [RPO](https://huggingface.co/papers/2404.19733) paper implements an iterative preference tuning algorithm using a loss related to the RPO loss in this [paper](https://huggingface.co/papers/2405.16436) that essentially consists of a weighted SFT loss on the chosen preferences together with the DPO loss. To use this loss, set the `rpo_alpha` in the [`DPOConfig`] to an appropriate value. The paper suggests setting this weight to 1.0.

The [RPO](https://huggingface.co/papers/2404.19733) paper implements an iterative preference tuning algorithm using a loss related to the RPO loss in this [paper](https://huggingface.co/papers/2405.16436) that essentially consists of a weighted SFT loss on the chosen preferences together with the DPO loss. To use this loss set the `rpo_alpha` in the `DPOConfig` to an appropriate value. The paper suggests setting this weight to 1.0.
The [SPPO](https://huggingface.co/papers/2405.00675) authors claim that SPPO is capable of solving the Nash equilibrium iteratively by pushing the chosen rewards to be as large as 1/2 and the rejected rewards to be as small as -1/2 and can alleviate data sparsity issues. The implementation approximates this algorithm by employing hard label probabilities, assigning 1 to the winner and 0 to the loser. To use this loss, set the `loss_type="sppo_hard"` in the [`DPOConfig`].

The [AOT](https://huggingface.co/papers/2406.05882) authors propose to use Distributional Preference Alignment Via Optimal Transport. Traditionally, the alignment algorithms use paired preferences at a sample level, which does not ensure alignment on the distributional level. AOT, on the other hand, can align LLMs on paired or unpaired preference data by making the reward distribution of the positive samples stochastically dominant in the first order on the distribution of negative samples. Specifically, `loss_type="aot"` is appropriate for paired datasets, where each prompt has both chosen and rejected responses; `loss_type="aot_pair"` is for unpaired datasets. In a nutshell, `loss_type="aot"` ensures that the log-likelihood ratio of chosen to rejected of the aligned model has higher quantiles than that ratio for the reference model. `loss_type="aot_pair"` ensures that the chosen reward is higher on all quantiles than the rejected reward. Note that in both cases quantiles are obtained via sorting. To fully leverage the advantages of the AOT algorithm, it is important to maximize the per-GPU batch size.

Expand Down Expand Up @@ -240,7 +240,7 @@ However, after using this approach, you will have an unquantized base model. The

### Using option 3 - load the adapter twice

To avoid the downsides with option 2, you can load your fine-tuned adapter into the model twice, with different names, and set the model/ref adapter names in DPOTrainer.
To avoid the downsides with option 2, you can load your fine-tuned adapter into the model twice, with different names, and set the model/ref adapter names in [`DPOTrainer`].

For example:

Expand Down
Loading

0 comments on commit b0372e6

Please sign in to comment.