Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[examples/translation] support mBART-50 and M2M100 fine-tuning #11170

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 29 additions & 8 deletions examples/seq2seq/run_translation.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,9 @@
AutoTokenizer,
DataCollatorForSeq2Seq,
HfArgumentParser,
M2M100Tokenizer,
MBart50Tokenizer,
MBart50TokenizerFast,
MBartTokenizer,
MBartTokenizerFast,
Seq2SeqTrainer,
Expand All @@ -50,6 +53,9 @@

logger = logging.getLogger(__name__)

# A list of all multilingual tokenizer which require src_lang and tgt_lang attributes.
MULTILINGUAL_TOKENIZERS = [MBartTokenizer, MBartTokenizerFast, MBart50Tokenizer, MBart50TokenizerFast, M2M100Tokenizer]


@dataclass
class ModelArguments:
Expand Down Expand Up @@ -191,6 +197,14 @@ class DataTrainingArguments:
source_prefix: Optional[str] = field(
default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
)
forced_bos_token: Optional[str] = field(
default=None,
metadata={
"help": "The token to force as the first generated token after the :obj:`decoder_start_token_id`."
"Useful for multilingual models like :doc:`mBART <../model_doc/mbart>` where the first generated token "
"needs to be the target language token.(Usually it is the target language token)"
},
)

def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
Expand Down Expand Up @@ -325,9 +339,6 @@ def main():

# Set decoder_start_token_id
if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
assert (
data_args.target_lang is not None and data_args.source_lang is not None
), "mBart requires --target_lang and --source_lang"
if isinstance(tokenizer, MBartTokenizer):
model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.target_lang]
else:
Expand All @@ -352,11 +363,21 @@ def main():

# For translation we set the codes of our source and target languages (only useful for mBART, the others will
# ignore those attributes).
if isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
if data_args.source_lang is not None:
tokenizer.src_lang = data_args.source_lang
if data_args.target_lang is not None:
tokenizer.tgt_lang = data_args.target_lang
if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
assert data_args.target_lang is not None and data_args.source_lang is not None, (
f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --source_lang and "
"--target_lang arguments."
)

tokenizer.src_lang = data_args.source_lang
tokenizer.tgt_lang = data_args.target_lang

# For multilingual translation models like mBART-50 and M2M100 we need to force the target language token
# as the first generated token. We ask the user to explicitly provide this as --forced_bos_token argument.
forced_bos_token_id = (
tokenizer.lang_code_to_id[data_args.forced_bos_token] if data_args.forced_bos_token is not None else None
)
model.config.foced_bos_token_id = forced_bos_token_id

# Get the language codes for input/target.
source_lang = data_args.source_lang.split("_")[0]
Expand Down