Skip to content

Commit

Permalink
update and reuse preprocess_inputs
Browse files Browse the repository at this point in the history
  • Loading branch information
eaidova committed Nov 11, 2024
1 parent cd3b8bd commit b20991d
Show file tree
Hide file tree
Showing 4 changed files with 157 additions and 152 deletions.
2 changes: 1 addition & 1 deletion optimum/intel/openvino/modeling_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -139,7 +139,7 @@ def __init__(
# some model configs may have issues with loading without parameters initialization
try:
misplaced_generation_parameters = self.config._get_non_default_generation_parameters()
except Exception:
except KeyError:
misplaced_generation_parameters = {}
if len(misplaced_generation_parameters) > 0:
logger.warning(
Expand Down
2 changes: 1 addition & 1 deletion optimum/intel/openvino/modeling_base_seq2seq.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,7 @@ def __init__(
# some model configs may have issues with loading without parameters initialization
try:
misplaced_generation_parameters = self.config._get_non_default_generation_parameters()
except Exception:
except KeyError:
misplaced_generation_parameters = {}
if len(misplaced_generation_parameters) > 0:
logger.warning(
Expand Down
153 changes: 142 additions & 11 deletions optimum/intel/openvino/modeling_visual_language.py
Original file line number Diff line number Diff line change
Expand Up @@ -915,10 +915,16 @@ def preprocess_inputs(
image: Optional[Image] = None,
tokenizer: Optional[PreTrainedTokenizer] = None,
):
if image is None:
raise ValueError("Image is required.")
chat_template = [{"role": "user", "content": [{"type": "text", "text": text}, {"type": "image"}]}]
prompt = processor.apply_chat_template(chat_template, add_generation_prompt=True)
if processor.chat_template is not None:
chat_prompt = [{"role": "user", "content": [{"type": "text", "text": text}]}]
if image is not None:
chat_prompt[0]["content"].append({"type": "image"})
prompt = processor.apply_chat_template(chat_prompt, add_generation_prompt=True, tokenize=False)
else:
if image is not None and "<image>" not in text:
prompt = "<image>\n" + text
else:
prompt = text
inputs = processor(images=image, text=prompt, return_tensors="pt")
return inputs

Expand Down Expand Up @@ -1217,6 +1223,120 @@ def merge_vision_text_embeddings(
input_embeds = input_embeds.reshape(B, N, C)
return input_embeds, attention_mask, position_ids

def preprocess_inputs(
self,
processor=None,
text: str = "",
image: Optional[Image] = None,
tokenizer: Optional[PreTrainedTokenizer] = None,
):
if tokenizer is None:
raise ValueError("Tokenizer is required.")
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode

IMG_START_TOKEN = "<img>"
IMG_END_TOKEN = "</img>"
IMG_CONTEXT_TOKEN = "<IMG_CONTEXT>"

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose(
[
T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD),
]
)
return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float("inf")
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=28, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height

# calculate the existing image aspect ratio
target_ratios = {
(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
}
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size
)

# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size,
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images

def load_image(image, input_size=448, max_num=12):
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values

if image is not None:
if "<image>" not in text:
text = "<image>\n" + text
pixel_values = load_image(image, input_size=self.config.vision_config.image_size)
num_patches = pixel_values.shape[0]
num_image_token = int(
(self.config.vision_config.image_size // self.config.vision_config.patch_size) ** 2
* (self.config.downsample_ratio**2)
)
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * num_image_token * num_patches + IMG_END_TOKEN
text = text.replace("<image>", image_tokens, 1)
text_inputs = tokenizer(text, return_tensors="pt")
inputs = dict(text_inputs)
inputs.update({"pixel_values": pixel_values})
else:
inputs = tokenizer(text, return_tensors="pt")
return inputs


class _OVMiniCPMVForCausalLM(OVModelForVisualCausalLM):
additional_parts = ["resampler"]
Expand Down Expand Up @@ -1443,9 +1563,15 @@ def preprocess_inputs(
image: Optional[Image] = None,
tokenizer: Optional[PreTrainedTokenizer] = None,
):
if image is None:
raise ValueError("Image is required.")
prompt = f"<|im_start|>user\n(<image>./</image>)\n{text}<|im_end|>\n<|im_start|>assistant\n"
if processor.chat_template is not None:
messages = [{"role": "user", "content": text if image is None else "(<image>./</image>)\n" + text}]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
else:
prompt = (
f"<|im_start|>user\n(<image>./</image>)\n{text}<|im_end|>\n<|im_start|>assistant\n"
if image is not None
else text
)
inputs = processor([prompt], [image], return_tensors="pt")
return inputs

Expand Down Expand Up @@ -1630,10 +1756,15 @@ def preprocess_inputs(
):
if tokenizer is None:
raise ValueError("Tokenizer is required.")
messages = [{"role": "user", "content": f"<image>\n{text}"}]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split("<image>")]
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
text_content = f"<image>\n{text}" if image is not None else text
messages = [{"role": "user", "content": text_content}]
if tokenizer.chat_template is not None:
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
if image is not None:
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split("<image>")]
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
else:
input_ids = tokenizer(text, return_tensors="pt").input_ids
attention_mask = torch.ones_like(input_ids, dtype=torch.int64)
result = {"input_ids": input_ids, "attention_mask": attention_mask}
if image is not None:
Expand Down
Loading

0 comments on commit b20991d

Please sign in to comment.