-
Notifications
You must be signed in to change notification settings - Fork 226
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Enable pyTorch-IMage-Models (TIMM) with HPUs (#1459)
Co-authored-by: regisss <[email protected]>
- Loading branch information
1 parent
0b7c32f
commit 5485726
Showing
6 changed files
with
3,501 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,163 @@ | ||
<!--- | ||
Copyright 2021 The HuggingFace Team. All rights reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
--> | ||
|
||
# pyTorch-IMage-Models (TIMM) Examples with HPUs | ||
|
||
This directory contains the scripts that showcases how to inference/fine-tune the TIMM models on intel's HPUs with the lazy/graph modes. We support the trainging for single/multiple HPU cards both two. Currently we support several most downloadable models from Hugging Face as below list. | ||
|
||
- [timm/resnet50.a1_in1k](https://huggingface.co/timm/resnet50.a1_in1k) | ||
- [timm/resnet18.a1_in1k](https://huggingface.co/timm/resnet18.a1_in1k) | ||
- [timm/resnet18.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnet18.fb_swsl_ig1b_ft_in1k) | ||
- [timm/wide_resnet50_2.racm_in1k](https://huggingface.co/timm/wide_resnet50_2.racm_in1k) | ||
- [timm/efficientnet_b3.ra2_in1k](https://huggingface.co/timm/efficientnet_b3.ra2_in1k) | ||
- [timm/efficientnet_lite0.ra_in1k](https://huggingface.co/timm/efficientnet_lite0.ra_in1k) | ||
- [timm/efficientnet_b0.ra_in1k](https://huggingface.co/timm/efficientnet_b0.ra_in1k) | ||
- [timm/nf_regnet_b1.ra2_in1k](https://huggingface.co/timm/nf_regnet_b1.ra2_in1k) | ||
- [timm/mobilenetv3_large_100.ra_in1k](https://huggingface.co/timm/mobilenetv3_large_100.ra_in1k) | ||
- [timm/tf_mobilenetv3_large_minimal_100.in1k](https://huggingface.co/timm/tf_mobilenetv3_large_minimal_100.in1k) | ||
- [timm/vit_base_patch16_224.augreg2_in21k_ft_in1k](https://huggingface.co/timm/vit_base_patch16_224.augreg2_in21k_ft_in1k) | ||
- [timm/vgg19.tv_in1k](https://huggingface.co/timm/vgg19.tv_in1k) | ||
|
||
## Requirements | ||
|
||
First, you should install the pytorch-image-models (Timm): | ||
```bash | ||
git clone https://github.com/huggingface/pytorch-image-models.git | ||
cd pytorch-image-models | ||
pip install . | ||
``` | ||
|
||
## Single-HPU training | ||
|
||
### Using datasets from Hub | ||
|
||
Here we show how to fine-tune the [imagenette2-320 dataset](https://huggingface.co/datasets/johnowhitaker/imagenette2-320) and model with [timm/resnet50.a1_in1k](https://huggingface.co/timm/resnet50.a1_in1k) from Hugging Face. | ||
|
||
### Training with HPU lazy mode | ||
|
||
```bash | ||
python train_hpu_lazy.py \ | ||
--data-dir ./ \ | ||
--dataset hfds/johnowhitaker/imagenette2-320 \ | ||
--device 'hpu' \ | ||
--model resnet50.a1_in1k \ | ||
--train-split train \ | ||
--val-spit train \ | ||
--dataset-download | ||
``` | ||
|
||
python train_hpu_lazy.py --data-dir='./' --dataset hfds/johnowhitaker/imagenette2-320 --device='hpu' --model resnet50.a1_in1k | ||
### Training with HPU graph mode | ||
|
||
```bash | ||
python train_hpu_graph.py \ | ||
--data-dir ./ \ | ||
--dataset hfds/johnowhitaker/imagenette2-320 \ | ||
--device 'hpu' \ | ||
--model resnet50.a1_in1k \ | ||
--train-split train \ | ||
--val-spit train \ | ||
--dataset-download | ||
``` | ||
|
||
Here the results for lazy mode is shown below for example: | ||
|
||
```bash | ||
Train: 0 [ 0/73 ( 1%)] Loss: 6.86 (6.86) Time: 9.575s, 13.37/s (9.575s, 13.37/s) LR: 1.000e-05 Data: 0.844 (0.844) | ||
Train: 0 [ 50/73 ( 70%)] Loss: 6.77 (6.83) Time: 0.320s, 400.32/s (0.470s, 272.39/s) LR: 1.000e-05 Data: 0.217 (0.047) | ||
Test: [ 0/30] Time: 6.593 (6.593) Loss: 6.723 ( 6.723) Acc@1: 0.000 ( 0.000) Acc@5: 0.000 ( 0.000) | ||
Test: [ 30/30] Time: 3.856 (0.732) Loss: 6.615 ( 6.691) Acc@1: 0.000 ( 0.076) Acc@5: 1.176 ( 3.287) | ||
|
||
Train: 1 [ 0/73 ( 1%)] Loss: 6.69 (6.69) Time: 0.796s, 160.74/s (0.796s, 160.74/s) LR: 1.001e-02 Data: 0.685 (0.685) | ||
Train: 1 [ 50/73 ( 70%)] Loss: 3.23 (3.76) Time: 0.160s, 798.85/s (0.148s, 863.22/s) LR: 1.001e-02 Data: 0.053 (0.051) | ||
Test: [ 0/30] Time: 0.663 (0.663) Loss: 1.926 ( 1.926) Acc@1: 46.094 ( 46.094) Acc@5: 85.938 ( 85.938) | ||
Test: [ 30/30] Time: 0.022 (0.126) Loss: 1.462 ( 1.867) Acc@1: 63.529 ( 39.261) Acc@5: 83.529 ( 85.096) | ||
|
||
``` | ||
|
||
|
||
## Multi-HPU training | ||
|
||
Here we show how to fine-tune the [imagenette2-320 dataset](https://huggingface.co/datasets/johnowhitaker/imagenette2-320) and model with [timm/resnet50.a1_in1k](https://huggingface.co/timm/resnet50.a1_in1k) from Hugging Face. | ||
|
||
### Training with HPU lazy mode | ||
```bash | ||
torchrun --nnodes 1 --nproc_per_node 2 \ | ||
train_hpu_lazy.py \ | ||
--data-dir ./ \ | ||
--dataset hfds/johnowhitaker/imagenette2-320 \ | ||
--device 'hpu' \ | ||
--model resnet50.a1_in1k \ | ||
--train-split train \ | ||
--val-split train \ | ||
--dataset-download | ||
``` | ||
### Training with HPU graph mode | ||
|
||
```bash | ||
torchrun --nnodes 1 --nproc_per_node 2 \ | ||
train_hpu_graph.py \ | ||
--data-dir ./ \ | ||
--dataset hfds/johnowhitaker/imagenette2-320 \ | ||
--device 'hpu' \ | ||
--model resnet50.a1_in1k \ | ||
--train-split train \ | ||
--val-split train \ | ||
--dataset-download | ||
``` | ||
|
||
Here the results for lazy mode is shown below for example: | ||
|
||
```bash | ||
Train: 0 [ 0/36 ( 3%)] Loss: 6.88 (6.88) Time: 10.036s, 25.51/s (10.036s, 25.51/s) LR: 1.000e-05 Data: 0.762 (0.762) | ||
Test: [ 0/15] Time: 7.796 (7.796) Loss: 6.915 ( 6.915) Acc@1: 0.000 ( 0.000) Acc@5: 0.000 ( 0.000) | ||
Test: [ 15/15] Time: 1.915 (1.263) Loss: 6.847 ( 6.818) Acc@1: 0.000 ( 0.000) Acc@5: 0.000 ( 0.688) | ||
|
||
Train: 1 [ 0/36 ( 3%)] Loss: 6.84 (6.84) Time: 6.687s, 38.28/s (6.687s, 38.28/s) LR: 2.001e-02 Data: 0.701 (0.701) | ||
Test: [ 0/15] Time: 1.315 (1.315) Loss: 2.463 ( 2.463) Acc@1: 14.062 ( 14.062) Acc@5: 48.828 ( 48.828) | ||
Test: [ 15/15] Time: 0.020 (0.180) Loss: 1.812 ( 1.982) Acc@1: 52.326 ( 32.934) Acc@5: 66.279 ( 75.064) | ||
|
||
``` | ||
|
||
|
||
|
||
## Single-HPU inference | ||
|
||
Here we show how to fine-tune the [imagenette2-320 dataset](https://huggingface.co/datasets/johnowhitaker/imagenette2-320) and model with [timm/resnet50.a1_in1k](https://huggingface.co/timm/resnet50.a1_in1k) from Hugging Face. | ||
|
||
### HPU with graph mode | ||
```bash | ||
python inference.py \ | ||
--data-dir='./' \ | ||
--dataset hfds/johnowhitaker/imagenette2-320 \ | ||
--device='hpu' \ | ||
--model resnet50.a1_in1k \ | ||
--split train \ | ||
--graph_mode | ||
``` | ||
|
||
### HPU with lazy mode | ||
```bash | ||
python inference.py \ | ||
--data-dir='./' \ | ||
--dataset hfds/johnowhitaker/imagenette2-320 \ | ||
--device='hpu' \ | ||
--model resnet50.a1_in1k \ | ||
--split train | ||
``` | ||
|
||
|
||
|
Oops, something went wrong.