Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Auto grad accum example #742

Merged
merged 3 commits into from
Oct 5, 2022
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/source/usage_guides/training_zoo.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@ These examples showcase the base features of Accelerate and are a great starting

These examples showcase specific features that the Accelerate framework offers

- [Automatic memory-aware gradient accumulation](https://github.com/huggingface/accelerate/blob/main/examples/by_feature/automatic_gradient_accumulation.py)
- [Checkpointing states](https://github.com/huggingface/accelerate/blob/main/examples/by_feature/checkpointing.py)
- [Cross validation](https://github.com/huggingface/accelerate/blob/main/examples/by_feature/cross_validation.py)
- [DeepSpeed](https://github.com/huggingface/accelerate/blob/main/examples/by_feature/deepspeed_with_config_support.py)
Expand Down
232 changes: 232 additions & 0 deletions examples/by_feature/automatic_gradient_accumulation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,232 @@
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os

import torch
from torch.optim import AdamW
from torch.utils.data import DataLoader

# New Code #
import evaluate
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed


########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to combine both the gradient accumulation
# and automatic batch size finder utilities of Accelerate to perfrom
# automatic gradient accumulation
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################

EVAL_BATCH_SIZE = 32


def get_dataloaders(accelerator: Accelerator, batch_size: int = 16):
"""
Creates a set of `DataLoader`s for the `glue` dataset,
using "bert-base-cased" as the tokenizer.

Args:
accelerator (`Accelerator`):
An `Accelerator` object
batch_size (`int`, *optional*):
The batch size for the train and validation DataLoaders.
"""
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
datasets = load_dataset("glue", "mrpc")

def tokenize_function(examples):
# max_length=None => use the model max length (it's actually the default)
outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None)
return outputs

# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
tokenized_datasets = datasets.map(
tokenize_function,
batched=True,
remove_columns=["idx", "sentence1", "sentence2"],
)

# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")

def collate_fn(examples):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt")
return tokenizer.pad(examples, padding="longest", return_tensors="pt")

# Instantiate dataloaders.
train_dataloader = DataLoader(
tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size
)
eval_dataloader = DataLoader(
tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE
)

return train_dataloader, eval_dataloader


# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders

get_dataloaders = mocked_dataloaders # noqa: F811


def training_function(config, args):
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
config["num_epochs"] = 2
# Initialize accelerator
accelerator = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision)
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lr = config["lr"]
num_epochs = int(config["num_epochs"])
seed = int(config["seed"])
observed_batch_size = int(config["batch_size"])

metric = evaluate.load("glue", "mrpc")

# New Code #
# We use the `find_executable_batch_size` decorator, passing in the desired observed batch size
# to train on. If a CUDA OOM error occurs, it will retry this loop cutting the batch size in
# half each time. From this, we can calcualte the number of gradient accumulation steps needed
muellerzr marked this conversation as resolved.
Show resolved Hide resolved
# and modify the Accelerator object as a result
@find_executable_batch_size(starting_batch_size=int(observed_batch_size))
def inner_training_loop(batch_size):
# Since we need to modify the outside accelerator object, we need to bring it
# to the local scope
nonlocal accelerator

# We can calculate the number of gradient accumulation steps based on the current
# batch size vs the starting batch size
num_gradient_accumulation_steps = observed_batch_size // batch_size

# And then set it in the Accelerator directly:
accelerator.gradient_accumulation_steps = num_gradient_accumulation_steps

# Next we need to free all of the stored model references in the Accelerator each time
accelerator.free_memory()

# And set the seed so our results are reproducable each reset
set_seed(seed)

# Instantiate the model (we build the model here so that the seed also control new weights initialization)
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True)

# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
model = model.to(accelerator.device)

# Instantiate optimizer
optimizer = AdamW(params=model.parameters(), lr=lr)
train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size)

# Instantiate scheduler
lr_scheduler = get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=100,
num_training_steps=(len(train_dataloader) * num_epochs),
)

# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)

# Now we train the model
for epoch in range(num_epochs):
model.train()
for step, batch in enumerate(train_dataloader):
# And perform gradient accumulation
with accelerator.accumulate(model):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device)
outputs = model(**batch)
loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()

model.eval()
for step, batch in enumerate(eval_dataloader):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device)
with torch.no_grad():
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"]))
metric.add_batch(
predictions=predictions,
references=references,
)

eval_metric = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"epoch {epoch}:", eval_metric)

# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()


def main():
parser = argparse.ArgumentParser(description="Simple example of training script.")
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU.",
)
parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.")
args = parser.parse_args()
# New Code #
# We modify the starting batch size to be an observed batch size of 256, to guarentee an initial CUDA OOM
config = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 256}
training_function(config, args)


if __name__ == "__main__":
main()
1 change: 1 addition & 0 deletions tests/test_examples.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@
"gradient_accumulation.py",
"multi_process_metrics.py",
"memory.py",
"automatic_gradient_accumulation.py",
"fsdp_with_peak_mem_tracking.py",
"deepspeed_with_config_support.py",
]
Expand Down