Source code for ACL 2023 CODI workshop paper: Contrastive Hierarchical Discourse Graph for Scientific Document Summarization
Input the command for environment setup:
pip install -r requirement.txt
python train_e2e.py --model_save_path [model save path]
--data_path [data save path]
--data_name [pubmed or arxiv]
--hidden [hidden size]
--lr [lr]
--dropout [dropout rate]
--sepochs [epoch num]
--train_c [the flag to indcate if the model will update contrast model's parameter]
--cweight_path [contrast model parameter path]
--sweight_path [summarization model parameter path]
python test.py --data_path [data save path]
--data_name [pubmed or arxiv]
--hidden [hidden size]
--cweight_path [contrast model parameter path]
--sweight_path [summarization model parameter path]
@misc{zhang2023contrastive,
title={Contrastive Hierarchical Discourse Graph for Scientific Document Summarization},
author={Haopeng Zhang and Xiao Liu and Jiawei Zhang},
year={2023},
eprint={2306.00177},
archivePrefix={arXiv},
primaryClass={cs.CL}
}