Skip to content

Commit

Permalink
Many changes...
Browse files Browse the repository at this point in the history
  • Loading branch information
hgaiser committed Sep 15, 2014
1 parent 5714708 commit 2fbaacd
Show file tree
Hide file tree
Showing 70 changed files with 8,874 additions and 72 deletions.
4 changes: 2 additions & 2 deletions graph/CMakeLists.txt → felz/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -23,15 +23,15 @@ include_directories(
${NUMPY_INCLUDE_DIRS}
)

add_library(segment_felz MODULE src/segment.cpp)
add_library(segment_felz MODULE src/segment.cpp src/conversion.cpp)
set_target_properties(segment_felz PROPERTIES PREFIX "")
target_link_libraries(segment_felz
${Boost_LIBRARIES}
${OpenCV_LIBRARIES}
${PYTHON_LIBRARIES}
)

add_executable(segment src/segment.cpp)
add_executable(segment src/segment.cpp src/conversion.cpp)
target_link_libraries(segment
${Boost_LIBRARIES}
${OpenCV_LIBRARIES}
Expand Down
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
231 changes: 231 additions & 0 deletions felz/src/conversion.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,231 @@
# include "conversion.h"
/*
* The following conversion functions are taken/adapted from OpenCV's cv2.cpp file
* inside modules/python/src2 folder.
*/

static void init()
{
import_array();
}

static int failmsg(const char *fmt, ...)
{
char str[1000];

va_list ap;
va_start(ap, fmt);
vsnprintf(str, sizeof(str), fmt, ap);
va_end(ap);

PyErr_SetString(PyExc_TypeError, str);
return 0;
}

class PyAllowThreads
{
public:
PyAllowThreads() : _state(PyEval_SaveThread()) {}
~PyAllowThreads()
{
PyEval_RestoreThread(_state);
}
private:
PyThreadState* _state;
};

class PyEnsureGIL
{
public:
PyEnsureGIL() : _state(PyGILState_Ensure()) {}
~PyEnsureGIL()
{
PyGILState_Release(_state);
}
private:
PyGILState_STATE _state;
};

using namespace cv;

static PyObject* failmsgp(const char *fmt, ...)
{
char str[1000];

va_list ap;
va_start(ap, fmt);
vsnprintf(str, sizeof(str), fmt, ap);
va_end(ap);

PyErr_SetString(PyExc_TypeError, str);
return 0;
}

class NumpyAllocator : public MatAllocator
{
public:
NumpyAllocator() {}
~NumpyAllocator() {}

void allocate(int dims, const int* sizes, int type, int*& refcount,
uchar*& datastart, uchar*& data, size_t* step)
{
PyEnsureGIL gil;

int depth = CV_MAT_DEPTH(type);
int cn = CV_MAT_CN(type);
const int f = (int)(sizeof(size_t)/8);
int typenum = depth == CV_8U ? NPY_UBYTE : depth == CV_8S ? NPY_BYTE :
depth == CV_16U ? NPY_USHORT : depth == CV_16S ? NPY_SHORT :
depth == CV_32S ? NPY_INT : depth == CV_32F ? NPY_FLOAT :
depth == CV_64F ? NPY_DOUBLE : f*NPY_ULONGLONG + (f^1)*NPY_UINT;
int i;
npy_intp _sizes[CV_MAX_DIM+1];
for( i = 0; i < dims; i++ )
{
_sizes[i] = sizes[i];
}

if( cn > 1 )
{
_sizes[dims++] = cn;
}

PyObject* o = PyArray_SimpleNew(dims, _sizes, typenum);

if(!o)
{
CV_Error_(CV_StsError, ("The numpy array of typenum=%d, ndims=%d can not be created", typenum, dims));
}
refcount = refcountFromPyObject(o);

npy_intp* _strides = PyArray_STRIDES(o);
for( i = 0; i < dims - (cn > 1); i++ )
step[i] = (size_t)_strides[i];
datastart = data = (uchar*)PyArray_DATA(o);
}

void deallocate(int* refcount, uchar*, uchar*)
{
PyEnsureGIL gil;
if( !refcount )
return;
PyObject* o = pyObjectFromRefcount(refcount);
Py_INCREF(o);
Py_DECREF(o);
}
};

NumpyAllocator g_numpyAllocator;

NDArrayConverter::NDArrayConverter() { init(); }

void NDArrayConverter::init()
{
import_array();
}

cv::Mat NDArrayConverter::toMat(const PyObject *o)
{
cv::Mat m;

if(!o || o == Py_None)
{
if( !m.data )
m.allocator = &g_numpyAllocator;
}

if( !PyArray_Check(o) )
{
failmsg("toMat: Object is not a numpy array");
}

int typenum = PyArray_TYPE(o);
int type = typenum == NPY_UBYTE ? CV_8U : typenum == NPY_BYTE ? CV_8S :
typenum == NPY_USHORT ? CV_16U : typenum == NPY_SHORT ? CV_16S :
typenum == NPY_INT || typenum == NPY_LONG ? CV_32S :
typenum == NPY_FLOAT ? CV_32F :
typenum == NPY_DOUBLE ? CV_64F : -1;

if( type < 0 )
{
failmsg("toMat: Data type = %d is not supported", typenum);
}

int ndims = PyArray_NDIM(o);

if(ndims >= CV_MAX_DIM)
{
failmsg("toMat: Dimensionality (=%d) is too high", ndims);
}

int size[CV_MAX_DIM+1];
size_t step[CV_MAX_DIM+1], elemsize = CV_ELEM_SIZE1(type);
const npy_intp* _sizes = PyArray_DIMS(o);
const npy_intp* _strides = PyArray_STRIDES(o);
bool transposed = false;

for(int i = 0; i < ndims; i++)
{
size[i] = (int)_sizes[i];
step[i] = (size_t)_strides[i];
}

if( ndims == 0 || step[ndims-1] > elemsize ) {
size[ndims] = 1;
step[ndims] = elemsize;
ndims++;
}

if( ndims >= 2 && step[0] < step[1] )
{
std::swap(size[0], size[1]);
std::swap(step[0], step[1]);
transposed = true;
}

if( ndims == 3 && size[2] <= CV_CN_MAX && step[1] == elemsize*size[2] )
{
ndims--;
type |= CV_MAKETYPE(0, size[2]);
}

if( ndims > 2)
{
failmsg("toMat: Object has more than 2 dimensions");
}

m = Mat(ndims, size, type, PyArray_DATA(o), step);

if( m.data )
{
m.refcount = refcountFromPyObject(o);
m.addref(); // protect the original numpy array from deallocation
// (since Mat destructor will decrement the reference counter)
};
m.allocator = &g_numpyAllocator;

if( transposed )
{
Mat tmp;
tmp.allocator = &g_numpyAllocator;
transpose(m, tmp);
m = tmp;
}
return m;
}

PyObject* NDArrayConverter::toNDArray(const cv::Mat& m)
{
if( !m.data )
Py_RETURN_NONE;
Mat temp, *p = (Mat*)&m;
if(!p->refcount || p->allocator != &g_numpyAllocator)
{
temp.allocator = &g_numpyAllocator;
m.copyTo(temp);
p = &temp;
}
p->addref();
return pyObjectFromRefcount(p->refcount);
}
60 changes: 60 additions & 0 deletions felz/src/conversion.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
# ifndef __COVERSION_OPENCV_H__
# define __COVERSION_OPENCV_H__

#include <Python.h>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/core/core.hpp>
#include "numpy/ndarrayobject.h"

static PyObject* opencv_error = 0;

static int failmsg(const char *fmt, ...);

class PyAllowThreads;

class PyEnsureGIL;

#define ERRWRAP2(expr) \
try \
{ \
PyAllowThreads allowThreads; \
expr; \
} \
catch (const cv::Exception &e) \
{ \
PyErr_SetString(opencv_error, e.what()); \
return 0; \
}

static PyObject* failmsgp(const char *fmt, ...);

static size_t REFCOUNT_OFFSET = (size_t)&(((PyObject*)0)->ob_refcnt) +
(0x12345678 != *(const size_t*)"\x78\x56\x34\x12\0\0\0\0\0")*sizeof(int);

static inline PyObject* pyObjectFromRefcount(const int* refcount)
{
return (PyObject*)((size_t)refcount - REFCOUNT_OFFSET);
}

static inline int* refcountFromPyObject(const PyObject* obj)
{
return (int*)((size_t)obj + REFCOUNT_OFFSET);
}


class NumpyAllocator;

enum { ARG_NONE = 0, ARG_MAT = 1, ARG_SCALAR = 2 };

class NDArrayConverter
{
private:
void init();
public:
NDArrayConverter();
cv::Mat toMat(const PyObject* o);
PyObject* toNDArray(const cv::Mat& mat);
};

# endif
File renamed without changes.
File renamed without changes.
14 changes: 8 additions & 6 deletions graph/src/segment-image.h → felz/src/segment-image.h
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
#include <map>

#define square(x) ((x)*(x))
#define COLORED_OUTPUT
//#define COLORED_OUTPUT

// random color
cv::Vec3b random_rgb(){
Expand All @@ -19,10 +19,12 @@ cv::Vec3b random_rgb(){

/// Difference between two pixels p1, p2 in image
static inline float diff(cv::Mat image, int p1, int p2) {
//cv::Vec3b d = image.at<cv::Vec3b>(p1) - image.at<cv::Vec3b>(p2);
cv::Vec3f a = image.at<cv::Vec3f>(p1);
cv::Vec3f b = image.at<cv::Vec3f>(p2);
return sqrt(square(a[0] - b[0]) + square(a[1] - b[1]) + square(a[2] - b[2]));
if (image.channels() == 3) {
cv::Vec3f a = image.at<cv::Vec3f>(p1);
cv::Vec3f b = image.at<cv::Vec3f>(p2);
return sqrt(square(a[0] - b[0]) + square(a[1] - b[1]) + square(a[2] - b[2]));
} else
return fabs(image.at<float>(p1) - image.at<float>(p2));
}

/*
Expand All @@ -36,7 +38,7 @@ static inline float diff(cv::Mat image, int p1, int p2) {
* min_size: minimum component size (enforced by post-processing stage).
*/
cv::Mat segment_image(cv::Mat image, float sigma, float c, int min_size) {
image.convertTo(image, CV_32FC3);
image.convertTo(image, CV_MAKETYPE(CV_32F, image.channels()));
cv::GaussianBlur(image, image, cv::Size(5, 5), sigma);
//image = smooth(image, sigma);

Expand Down
Loading

0 comments on commit 2fbaacd

Please sign in to comment.