Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ATSP Insertion bugfix; return tour for revisions #3

Merged
merged 10 commits into from
Jul 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
181 changes: 181 additions & 0 deletions eval_atsp/ASHPPEnv.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,181 @@

"""
The MIT License

Copyright (c) 2021 MatNet

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.



THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""

from dataclasses import dataclass
import torch
import warnings

from ATSProblemDef import get_random_problems


@dataclass
class Reset_State:
problems: torch.Tensor
# shape: (batch, node, node)


@dataclass
class Step_State:
BATCH_IDX: torch.Tensor
POMO_IDX: torch.Tensor
# shape: (batch, pomo)
current_node: torch.Tensor = None
# shape: (batch, pomo)
ninf_mask: torch.Tensor = None
# shape: (batch, pomo, node)


class ASHPPEnv:
def __init__(self, **env_params):

# Const @INIT
####################################
self.env_params = env_params
self.node_cnt = env_params['node_cnt']
self.pomo_size = env_params['pomo_size'] # pomo size if sample size here

# Const @Load_Problem
####################################
self.batch_size = None
self.BATCH_IDX = None
self.POMO_IDX = None
# IDX.shape: (batch, pomo)
self.problems = None
# shape: (batch, node, node)

# Dynamic
####################################
self.selected_count = None
self.current_node = None
# shape: (batch, pomo)
self.selected_node_list = None
# shape: (batch, pomo, 0~)

# STEP-State
####################################
self.step_state = None

def load_problems(self, batch_size):
self.batch_size = batch_size
self.BATCH_IDX = torch.arange(self.batch_size)[:, None].expand(self.batch_size, self.pomo_size)
self.POMO_IDX = torch.arange(self.pomo_size)[None, :].expand(self.batch_size, self.pomo_size)

problem_gen_params = self.env_params['problem_gen_params']
self.problems = get_random_problems(batch_size, self.node_cnt, problem_gen_params)
# shape: (batch, node, node)

def load_problems_manual(self, problems):
# problems.shape: (batch, node, node)

self.batch_size = problems.size(0)
self.BATCH_IDX = torch.arange(self.batch_size)[:, None].expand(self.batch_size, self.pomo_size)
self.POMO_IDX = torch.arange(self.pomo_size)[None, :].expand(self.batch_size, self.pomo_size)
self.problems = problems
# shape: (batch, node, node)

def reset(self):
self.selected_count = 2 # Add starting and terminating ndoes
# Set current nodes as 0
self.current_node = torch.zeros((self.batch_size, self.pomo_size), dtype=torch.long)
# Set the last node as node - 1
self.last_node = torch.ones((self.batch_size, self.pomo_size), dtype=torch.long) * (self.node_cnt - 1)

# shape: (batch, pomo)
self.selected_node_list = self.current_node[:, :, None]
# shape: (batch, pomo, 0~)

self._create_step_state()

reward = None
done = False
return Reset_State(problems=self.problems), reward, done

def _create_step_state(self):
self.step_state = Step_State(BATCH_IDX=self.BATCH_IDX, POMO_IDX=self.POMO_IDX)
self.step_state.ninf_mask = torch.zeros((self.batch_size, self.pomo_size, self.node_cnt))
# shape: (batch, pomo, node)

def pre_step(self):
reward = None
done = False

# Set the starting and terminating nodes to -inf
self.step_state.ninf_mask[self.BATCH_IDX, self.POMO_IDX, 0] = float('-inf')
self.step_state.ninf_mask[self.BATCH_IDX, self.POMO_IDX, -1] = float('-inf')

# Set current node to 0
self.step_state.current_node = self.current_node
# Set last node to node - 1
self.step_state.last_node = self.last_node


return self.step_state, reward, done

def step(self, node_idx):
# node_idx.shape: (batch, pomo)

self.selected_count += 1
self.current_node = node_idx
# shape: (batch, pomo)
self.selected_node_list = torch.cat((self.selected_node_list, self.current_node[:, :, None]), dim=2)
# shape: (batch, pomo, 0~node)

self._update_step_state()

# returning values
done = (self.selected_count == self.node_cnt)
if done:
# Concat the terminating node (the last node) to the selected node list
self.current_node = torch.ones((self.batch_size, self.pomo_size), dtype=torch.long) * (self.node_cnt - 1)
self.selected_node_list = torch.cat((self.selected_node_list, self.current_node[:, :, None]), dim=2)
reward = -self._get_total_distance() # Note the MINUS Sign ==> We MAXIMIZE reward
# shape: (batch, pomo)
else:
reward = None
return self.step_state, reward, done

def _update_step_state(self):
self.step_state.current_node = self.current_node
# shape: (batch, pomo)
self.step_state.ninf_mask[self.BATCH_IDX, self.POMO_IDX, self.current_node] = float('-inf')
# shape: (batch, pomo, node)

def _get_total_distance(self):

node_from = self.selected_node_list[:, :, :-1]
# shape: (batch, pomo, node - 1)
node_to = self.selected_node_list.roll(dims=2, shifts=-1)[:, :, :-1]
# shape: (batch, pomo, node - 1)
batch_index = self.BATCH_IDX[:, :, None].expand(self.batch_size, self.pomo_size, self.node_cnt - 1)
# shape: (batch, pomo, node - 1)

selected_cost = self.problems[batch_index, node_from, node_to]
# shape: (batch, pomo, node - 1)
total_distance = selected_cost.sum(2)
# shape: (batch, pomo)

return total_distance
Loading