Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Upgrade to scope-rl==0.1.3 #19

Merged
merged 2 commits into from
Jul 24, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -280,12 +280,13 @@ random_ = EpsilonGreedyHead(
evaluation_policies = [cql_, ddqn_, random_]
# create input for the OPE class
prep = CreateOPEInput(
env=env,
logged_dataset=test_logged_dataset,
use_base_model=True, # use model-based prediction
)
input_dict = prep.obtain_whole_inputs(
logged_dataset=test_logged_dataset,
evaluation_policies=evaluation_policies,
env=env,
require_value_prediction=True,
n_trajectories_on_policy_evaluation=100,
random_state=random_state,
)
Expand Down
4 changes: 2 additions & 2 deletions docs/documentation/quickstart.rst
Original file line number Diff line number Diff line change
Expand Up @@ -207,11 +207,11 @@ and Doubly Robust (DR) :cite:`jiang2016doubly, thomas2016data`.
# create input for OPE class
prep = CreateOPEInput(
env=env,
logged_dataset=test_logged_dataset,
use_base_model=True, # use model-based prediction
)
input_dict = prep.obtain_whole_inputs(
logged_dataset=test_logged_dataset,
evaluation_policies=evaluation_policies,
require_value_prediction=True,
n_trajectories_on_policy_evaluation=100,
random_state=random_state,
)
Expand Down
144 changes: 84 additions & 60 deletions scope_rl/ope/ope.py
Original file line number Diff line number Diff line change
Expand Up @@ -2063,14 +2063,17 @@ def visualize_policy_value_with_multiple_estimates(
)

else:
sns.swarmplot(
data=df,
x="estimator",
y="policy_value",
hue="behavior_policy",
palette=palette,
ax=ax,
)
try:
sns.swarmplot(
data=df,
x="estimator",
y="policy_value",
hue="behavior_policy",
palette=palette,
ax=ax,
)
except:
warn("Encountered NaN values during plot.")

on_policy = policy_value_dict[behavior_policy][eval_policy][
"on_policy"
Expand Down Expand Up @@ -2178,14 +2181,17 @@ def visualize_policy_value_with_multiple_estimates(
)

else:
sns.swarmplot(
data=df,
x="eval_policy",
y="policy_value",
hue="behavior_policy",
palette=palette,
ax=ax,
)
try:
sns.swarmplot(
data=df,
x="eval_policy",
y="policy_value",
hue="behavior_policy",
palette=palette,
ax=ax,
)
except:
warn("Encountered NaN values during plot.")

if visualize_on_policy:
ax.scatter(
Expand Down Expand Up @@ -2273,13 +2279,16 @@ def visualize_policy_value_with_multiple_estimates(
ax=ax,
)
else:
sns.swarmplot(
data=df,
x="estimator",
y="policy_value",
palette=palette,
ax=ax,
)
try:
sns.swarmplot(
data=df,
x="estimator",
y="policy_value",
palette=palette,
ax=ax,
)
except:
warn("Encountered NaN values during plot.")

on_policy = policy_value_dict[eval_policy]["on_policy"]
if on_policy is not None:
Expand Down Expand Up @@ -2358,13 +2367,16 @@ def visualize_policy_value_with_multiple_estimates(
)

else:
sns.swarmplot(
data=df,
x="eval_policy",
y="policy_value",
palette=palette,
ax=ax,
)
try:
sns.swarmplot(
data=df,
x="eval_policy",
y="policy_value",
palette=palette,
ax=ax,
)
except:
warn("Encountered NaN values during plot.")

if visualize_on_policy:
ax.scatter(
Expand Down Expand Up @@ -5535,14 +5547,17 @@ def _visualize_off_policy_estimates_with_multiple_estimates(
)

else:
sns.swarmplot(
data=df,
x="estimator",
y="policy_value",
hue="behavior_policy",
palette=palette,
ax=ax,
)
try:
sns.swarmplot(
data=df,
x="estimator",
y="policy_value",
hue="behavior_policy",
palette=palette,
ax=ax,
)
except:
warn("Encountered NaN values during plot.")

on_policy = estimation_dict[behavior_policy][eval_policy][
"on_policy"
Expand Down Expand Up @@ -5650,14 +5665,17 @@ def _visualize_off_policy_estimates_with_multiple_estimates(
)

else:
sns.swarmplot(
data=df,
x="eval_policy",
y="policy_value",
hue="behavior_policy",
palette=palette,
ax=ax,
)
try:
sns.swarmplot(
data=df,
x="eval_policy",
y="policy_value",
hue="behavior_policy",
palette=palette,
ax=ax,
)
except:
warn("Encountered NaN values during plot.")

if visualize_on_policy:
ax.scatter(
Expand Down Expand Up @@ -5745,13 +5763,16 @@ def _visualize_off_policy_estimates_with_multiple_estimates(
ax=ax,
)
else:
sns.swarmplot(
data=df,
x="estimator",
y="policy_value",
palette=palette,
ax=ax,
)
try:
sns.swarmplot(
data=df,
x="estimator",
y="policy_value",
palette=palette,
ax=ax,
)
except:
warn("Encountered NaN values during plot.")

on_policy = estimation_dict[eval_policy]["on_policy"]
if on_policy is not None:
Expand Down Expand Up @@ -5843,13 +5864,16 @@ def _visualize_off_policy_estimates_with_multiple_estimates(
)

else:
sns.swarmplot(
data=df,
x="eval_policy",
y="policy_value",
palette=palette,
ax=ax,
)
try:
sns.swarmplot(
data=df,
x="eval_policy",
y="policy_value",
palette=palette,
ax=ax,
)
except:
warn("Encountered NaN values during plot.")

if visualize_on_policy:
ax.scatter(
Expand Down
24 changes: 18 additions & 6 deletions scope_rl/policy/head.py
Original file line number Diff line number Diff line change
Expand Up @@ -680,7 +680,7 @@ def __post_init__(self):
raise ValueError("random_state must be given")
self.random_ = check_random_state(self.random_state)

def _calc_pscore(self, greedy_action: np.ndarray, action: np.ndarray):
def calc_action_choice_probability(self, greedy_action: np.ndarray, action: np.ndarray):
"""Calculate pscore.

Parameters
Expand Down Expand Up @@ -723,7 +723,7 @@ def sample_action_and_output_pscore(self, x: np.ndarray):
"""
greedy_action = self.base_policy.predict(x)
action = self.sample_action(x)
pscore = self._calc_pscore(greedy_action, action)
pscore = self.calc_action_choice_probability(greedy_action, action)
return action, pscore

def calc_pscore_given_action(self, x: np.ndarray, action: np.ndarray):
Expand All @@ -744,7 +744,7 @@ def calc_pscore_given_action(self, x: np.ndarray, action: np.ndarray):

"""
greedy_action = self.base_policy.predict(x)
return self._calc_pscore(greedy_action, action)
return self.calc_action_choice_probability(greedy_action, action)

def sample_action(self, x: np.ndarray):
"""Sample action.
Expand Down Expand Up @@ -844,7 +844,7 @@ def __post_init__(self):
raise ValueError("random_state must be given")
self.random_ = check_random_state(self.random_state)

def _calc_pscore(self, greedy_action: np.ndarray, action: np.ndarray):
def calc_action_choice_probability(self, greedy_action: np.ndarray, action: np.ndarray):
"""Calculate pscore.

Parameters
Expand Down Expand Up @@ -889,7 +889,7 @@ def sample_action_and_output_pscore(self, x: np.ndarray):
"""
greedy_action = self.base_policy.predict(x)
action = self.sample_action(x)
pscore = self._calc_pscore(greedy_action, action)
pscore = self.calc_action_choice_probability(greedy_action, action)
return action, pscore

def calc_pscore_given_action(self, x: np.ndarray, action: np.ndarray):
Expand All @@ -910,7 +910,7 @@ def calc_pscore_given_action(self, x: np.ndarray, action: np.ndarray):

"""
greedy_action = self.base_policy.predict(x)
return self._calc_pscore(greedy_action, action)
return self.calc_action_choice_probability(greedy_action, action)

def sample_action(self, x: np.ndarray):
"""Sample action.
Expand Down Expand Up @@ -976,6 +976,18 @@ def __post_init__(self):
if not isinstance(self.base_policy, AlgoBase):
raise ValueError("base_policy must be a child class of AlgoBase")

def sample_action_and_output_pscore(self, x: np.ndarray):
"""Only for API consistency."""
pass

def calc_action_choice_probability(self, x: np.ndarray):
"""Only for API consistency."""
pass

def calc_pscore_given_action(self, x: np.ndarray, action: np.ndarray):
"""Only for API consistency."""
pass

def sample_action(self, x: np.ndarray):
"""Sample action.

Expand Down
2 changes: 1 addition & 1 deletion scope_rl/version.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2023, Haruka Kiyohara, Ren Kishimoto, HAKUHODO Technologies Inc., and Hanjuku-kaso Co., Ltd. All rights reserved.
# Licensed under the Apache 2.0 License.

__version__ = "0.1.2"
__version__ = "0.1.3"