Skip to content

gyyang/olfaction_evolution

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

olfaction_evolution

Studying how glomeruli can evolve from training.

Quick start using this jupyte notebook

Note: The following will be cleaned up shortly.

Figure 1: Standard network with a receptor layer

python main.py --analyze receptor_standard

Figure SX: Control for standard network without receptor layer

python main.py --analyze control_standard

Figure SX: Impact of pruning

python main.py --analyze control_pn2kc_prune_boolean

Figure SX: Impact of relabel dataset

python main.py --analyze control_relabel_prune

Figure SX: Training ORN-output network on relabel datasets

python main.py --analyze control_relabel_singlelayer

Figure SX: RNN

python main.py --analyze rnn_relabel

Figure SX: Vary correlation level of ORNs

python main.py --analyze vary_orn_corr_relabel

Figure SX: Impact of KC normalization

python main.py --analyze kc_norm

Figure 2: Multi-task training

python main.py --analyze multihead_standard

Figure 3: Meta learning

python main.py --analyze meta_standard

Figure SX: Meta learning controls

python main.py --analyze meta_control_standard

Figure 3: Scaling K-N plot

python main.py --analyze scaling

Figure SX: Vary number of ORs

python main.py --analyze vary_or

python main.py --analyze meta_vary_or

Figure 4: Effect of non-negativity

python main.py --analyze control_nonnegative

Figure 4: Vary number of KCs

python main.py --analyze control_vary_kc

Figure 4: Vary number of PNs

python main.py --analyze control_vary_pn

Figure 4: PN normalization

python main.py --analyze pn_norm_relabel

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •