Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add method for sparsecsr() that takes an AbstractMatrix #31

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions src/SparseMatrixCSR.jl
Original file line number Diff line number Diff line change
Expand Up @@ -93,9 +93,11 @@ Create a `SparseMatrixCSR` with `Bi`-based indexing (1 by default)
from the same `args...` as one constructs a `SparseMatrixCSC`
with the [`SparseArrays.sparse`](@extref) function.
"""
sparsecsr(A::AbstractMatrix{T}) where T = convert(SparseMatrixCSR{1,T,Int64}, A)
sparsecsr(I,J,V) = SparseMatrixCSR(transpose(sparse(J,I,V,dimlub(J),dimlub(I))))
sparsecsr(I,J,V,m,n) = SparseMatrixCSR(transpose(sparse(J,I,V,n,m)))
sparsecsr(I,J,V,m,n,combine) = SparseMatrixCSR(transpose(sparse(J,I,V,n,m,combine)))
sparsecsr(::Val{Bi},A::AbstractMatrix{T}) where {Bi,T} = convert(SparseMatrixCSR{Bi,T,Int64}, A)
sparsecsr(::Val{Bi},I,J,V) where Bi = SparseMatrixCSR{Bi}(transpose(sparse(J,I,V,dimlub(J),dimlub(I))))
sparsecsr(::Val{Bi},I,J,V,m,n) where Bi = SparseMatrixCSR{Bi}(transpose(sparse(J,I,V,n,m)))
sparsecsr(::Val{Bi},I,J,V,m,n,combine) where Bi = SparseMatrixCSR{Bi}(transpose(sparse(J,I,V,n,m,combine)))
Expand Down
12 changes: 12 additions & 0 deletions test/SparseMatrixCSR.jl
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,18 @@ function test_csr(Bi,Tv,Ti)
end
end

if Ti == Int64
dense = rand(Tv, maxrows,maxcols)
CSR = sparsecsr(Val(Bi), dense)
@test isa(CSR,SparseMatrixCSR{Bi,Tv,Ti})
@test CSR == dense
if Bi == 1
CSR = sparsecsr(dense)
@test CSR == dense
@test isa(CSR,SparseMatrixCSR{Bi,Tv,Ti})
end
end

CSC = sparse(I,J,V,maxrows,maxcols)
if Bi == 1
CSR = sparsecsr(I,J,V,maxrows,maxcols)
Expand Down