Skip to content

gregor160300/TenseVersusTensor

Repository files navigation

TenseVersusTensor

This repository contains the data and code needed to reproduce the findings in my master thesis for TU Delft (2024).

In order to get started check the Installation instructions.

Attribution

This project includes code from the genAI repository, which is licensed under the Apache License 2.0. The original code has been modified and adapted for use in this project. See the LICENSE-APACHE file for the full text of the Apache License 2.0.

It also includes part of the opus-100 dataset. No specific license information is available for this dataset. However the original paper can be cited like this:

@inproceedings{zhang-etal-2020-improving,
    title = "Improving Massively Multilingual Neural Machine Translation and Zero-Shot Translation",
    author = "Zhang, Biao  and
      Williams, Philip  and
      Titov, Ivan  and
      Sennrich, Rico",
    editor = "Jurafsky, Dan  and
      Chai, Joyce  and
      Schluter, Natalie  and
      Tetreault, Joel",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.acl-main.148",
    doi = "10.18653/v1/2020.acl-main.148",
    pages = "1628--1639",
}

and the OPUS project like this:

@inproceedings{tiedemann-2012-parallel,
    title = "Parallel Data, Tools and Interfaces in {OPUS}",
    author = {Tiedemann, J{\"o}rg},
    editor = "Calzolari, Nicoletta  and
      Choukri, Khalid  and
      Declerck, Thierry  and
      Do{\u{g}}an, Mehmet U{\u{g}}ur  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Moreno, Asuncion  and
      Odijk, Jan  and
      Piperidis, Stelios",
    booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}'12)",
    month = may,
    year = "2012",
    address = "Istanbul, Turkey",
    publisher = "European Language Resources Association (ELRA)",
    url = "http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf",
    pages = "2214--2218",
}

And part of the dair-ai/emotion dataset. Again no specific license is available, but the paper can be cited like this:

@inproceedings{saravia-etal-2018-carer,
    title = "{CARER}: Contextualized Affect Representations for Emotion Recognition",
    author = "Saravia, Elvis  and
      Liu, Hsien-Chi Toby  and
      Huang, Yen-Hao  and
      Wu, Junlin  and
      Chen, Yi-Shin",
    booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
    month = oct # "-" # nov,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/D18-1404",
    doi = "10.18653/v1/D18-1404",
    pages = "3687--3697",
    abstract = "Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.",
}

License

The original code in this project is licensed under the MIT License. See the LICENSE file for more information.

About

No description, website, or topics provided.

Resources

License

MIT, Apache-2.0 licenses found

Licenses found

MIT
LICENSE
Apache-2.0
LICENSE-APACHE

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published