Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DNA Methylation introduction section #956

Merged
merged 35 commits into from
Aug 1, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
35 commits
Select commit Hold shift + click to select a range
66bdbdf
First few edits
brockclarke May 13, 2019
a585702
final draft
brockclarke May 13, 2019
db7e3a7
Update citation-tags.tsv
brockclarke Jun 25, 2019
5bf698f
Update content/04.study.md
brockclarke Jul 26, 2019
8ad26dd
Update content/04.study.md
brockclarke Jul 26, 2019
99c19af
Update content/04.study.md
brockclarke Jul 26, 2019
2860a16
Update content/04.study.md
brockclarke Jul 26, 2019
a84c4a1
Update content/04.study.md
brockclarke Jul 26, 2019
30b7901
Merge branch 'master' into master
cgreene Jul 28, 2019
a0bc01e
changes in response to review here
brockclarke Jul 31, 2019
55b8a50
Merge branch 'master' of https://github.com/brockclarke/deep-review
brockclarke Jul 31, 2019
8cfe6a3
Merge branch 'master' into master
brockclarke Jul 31, 2019
00ed16d
Update content/04.study.md
brockclarke Jul 31, 2019
07fdc03
Update content/04.study.md
brockclarke Jul 31, 2019
dc61342
Update content/04.study.md
brockclarke Jul 31, 2019
84236c5
Update 04.study.md
brockclarke Jul 31, 2019
6f641bc
Update content/citation-tags.tsv
brockclarke Jul 31, 2019
eb540d7
Update content/citation-tags.tsv
brockclarke Aug 1, 2019
edf269d
delete Rhistory
cgreene Aug 1, 2019
6968452
Update content/citation-tags.tsv
brockclarke Aug 1, 2019
2327af5
Update content/citation-tags.tsv
brockclarke Aug 1, 2019
978e2dd
Update content/citation-tags.tsv
brockclarke Aug 1, 2019
3796879
Update content/citation-tags.tsv
brockclarke Aug 1, 2019
30ef486
Update content/citation-tags.tsv
brockclarke Aug 1, 2019
b75d297
Update content/citation-tags.tsv
brockclarke Aug 1, 2019
41a5a35
Update content/citation-tags.tsv
brockclarke Aug 1, 2019
0a88697
Update content/citation-tags.tsv
brockclarke Aug 1, 2019
94815b6
Update content/citation-tags.tsv
brockclarke Aug 1, 2019
42eac49
Update content/citation-tags.tsv
brockclarke Aug 1, 2019
49a7151
Restore webpage files
agitter Aug 1, 2019
c6a2928
Merge pull request #1 from agitter/restore-webpage
brockclarke Aug 1, 2019
50983fc
Update 04.study.md
brockclarke Aug 1, 2019
1ab5ac6
Update content/citation-tags.tsv
brockclarke Aug 1, 2019
bb3cc4a
Update content/citation-tags.tsv
brockclarke Aug 1, 2019
6efc3af
Update content/citation-tags.tsv
brockclarke Aug 1, 2019
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 20 additions & 0 deletions content/04.study.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,26 @@ For example, the effects of cellular heterogeneity on basic biology and disease

### DNA methylation

DNA methylation, is the process of adding a methyl group to a cytosine in the context of a CpG dinucleotide.
This DNA-level epigenetic modification regulates gene transcription, is critical in development, and alterations to DNA methylation are well-established as contributing to pathophysiology of many diseases including cancers [@tag:Robertson2005],[@tag:Feinberg2018].
Studies of DNA methylation have demonstrated the fundamental role of DNA methylation in cell lineage specification starting with stem cell differentiation [@tag:Meissner2008], [@tag:Nazor2012], as well as a strong relationship of DNA methylation with aging phenotypes [@tag:Kwabi-Addo2007], [@tag:Fraga2005], and pathogenesis in response to environmental exposures [@tag:Christensen2009], [@tag:Relton2010].

Traditional analytic approaches to DNA methylation data often focus on estimating differential DNA methylation between groups or related with an outcome using linear mixed effects models, so-called epigenome-wide association studies (EWAS) [@tag:Laird2010], [@tag:Wilhelm-Benartzi2013], [@tag:Liu2013], [@tag:Teschendorff2017].
In addition, a growing application of DNA methylation measures is to infer cellular or subject phenotypes from samples and either examine the relation of these phenotypes with outcomes or disease states directly, and/or include them in models as covariates [@tag:Titus2017], [@tag:Salas2018_GR], [@tag:Zhang2019], [@tag:Horvath2014], [@tag:Quach2017].
For example, inference of subject age using DNA methylation clock approaches are established [@tag:Horvath2013], and are starting to be applied to test the relation of biological age with disease risk and outcomes [@tag:Kresovich2019].
Different cell types have different DNA methylation profiles.
A novel approach to immunophenotyping combines measurements with Reference DNA methylation profiles of leukocytes, which are available, to infer immune cell type proportions [@tag:Houseman2012],[@tag:Salas2018].
This strategy is particularly helpful when only DNA is available from a sample.
Cell type inference is important for adjusting for cell-type composition in epigenome-wide association studies [@tag:Teschendorff2017].
While reference-based libraries have strong predictive value for immune cell type estimation and has broad utility, cell composition mixtures per se, and methods to incorporate estimates of mixtures pose important considerations on the interpretation of underlying biology associated with disease manifestations and phenotypes.
When a reference library is not available for use, methods that do not rely on these reference libraries, so called reference-free deconvolution [@tag:Houseman2016], are available to decompose signal purported to be contributed by cell types.
However, using reference-free cell type proportion estimates as potential confounders in adjusted models can be overly conservative as as outcome-associated variation in DNA methylation may be decomposed into putative cell type estimates.
Additional validated reference-based libraries for other tissue types, advancements in reference-free deconvolution methods, and application of deep learning methods are expected to provide new opportunities to understand and interpret DNA methylation in human health and disease.

Deep learning approaches have numerous potential applications for DNA methylation data.
Imputation methods that capture complex interactions between different regions of DNA can expand the number of CpG sites whose DNA methylation state can be studied, and ideally these methods can derive their own informative, biologically-relevant features.
The primary deep learning methods developed to date focus on: 1) estimating regions of methylation status and imputing missing methylation values, 2) performing classification and regression tasks, and 3) using the latent embeddings of methylation states to derive biologically meaningful features, infer interpolated disease states, and uncover CpG sites that aid the above prediction tasks.

#### Inference, imputation, and prediction

Deep learning approaches are beginning to help address some of the current limitations of feature-by-feature analysis approaches to DNA methylation data and may help uncover additional important features necessary to understand the biological underpinnings behind different pathological states.
Expand Down
22 changes: 22 additions & 0 deletions content/citation-tags.tsv
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,7 @@ Chen2015_trans_species doi:10.1093/bioinformatics/btv315
Choi2016_retain arxiv:1608.05745
Choi2016_gram arxiv:1611.07012
Chollet2016_xception arxiv:1610.02357
Christensen2009 doi:10.1371/journal.pgen.1000602
Chryssolouris1996_confidence doi:10.1109/72.478409
Ciresan2013_mitosis doi:10.1007/978-3-642-40763-5_51
Coates2013_cots_hpc url:http://www.jmlr.org/proceedings/papers/v28/coates13.html
Expand Down Expand Up @@ -71,8 +72,10 @@ Esfahani2016_melanoma doi:10.1109/EMBC.2016.7590963
Essinger2010_taxonomic doi:10.1109/IJCNN.2010.5596644
Esteva2017_skin_cancer_nature doi:10.1038/nature21056
Faruqi url:http://alifar76.github.io/sklearn-metrics/
Feinberg2018 doi:10.1056/NEJMra1402513
Finnegan2017_maximum doi:10.1101/105957
Fong2017_perturb doi:10.1109/ICCV.2017.371
Fraga2005 doi:10.1073/pnas.0500398102
Fu2019 doi:10.1109/TCBB.2019.2909237
Gal2015_dropout arxiv:1506.02142
Gaublomme2015_th17 doi:10.1016/j.cell.2015.11.009
Expand Down Expand Up @@ -100,6 +103,10 @@ Hinton2015_dk arxiv:1503.02531v1
Hochreiter doi:10.1093/bioinformatics/btm247
Hoff doi:10.1093/nar/gkp327
Horton1992_assessment doi:10.1093/nar/20.16.4331
Horvath2013 doi:10.1186/gb-2013-14-10-r115
Horvath2014 doi:10.1073/pnas.1412759111
Houseman2012 doi:10.1186/1471-2105-13-86
Houseman2016 doi:10.1186/s12859-016-1140-4
Hubara2016_qnn arxiv:1609.07061
Huddar2016_predicting doi:10.1109/ACCESS.2016.2618775
Hughes2016_macromol_react doi:10.1021/acscentsci.6b00162
Expand Down Expand Up @@ -128,11 +135,14 @@ Kooi2016_mamm_lesions doi:10.1016/j.media.2016.07.007
Kooi2017_mamm_tl doi:10.1002/mp.12110
Korfiatis2017 doi:10.1007/s10278-017-0009-z
Kraus2017_deeploc doi:10.15252/msb.20177551
Kresovich2019 doi:10.1093/jnci/djz020
Krizhevsky2013_nips_cnn url:https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
Krizhevsky2014_weird_trick arxiv:1404.5997
Kwabi-Addo2007 doi:10.1158/1078-0432.CCR-07-0085
Khwaja2017 doi:10.1109/BIOCAS.2017.8325078
Khwaja2018 arxiv:1810.01243
Lacey2016_dl_fpga arxiv:1602.04283
Laird2010 doi:10.1038/nrg2732
Lakhani2017_radiography doi:10.1148/radiol.2017162326
Lanchantin2016_motif arxiv:1608.03644
Lee2016_deeptarget arxiv:1603.09123v2
Expand All @@ -150,6 +160,7 @@ Lipton2015_lstm arxiv:1510.07641
Litjens2016_histopath_survey doi:10.1038/srep26286
Litjens2017_medimage_survey doi:10.1016/j.media.2017.07.005
Lisboa2006_review doi:10.1016/j.neunet.2005.10.007
Liu2013 doi:10.1038/nbt.2487
Liu doi:10.1371/journal.pone.0053253
Liu2016_towards arxiv:1604.07043
Liu2016_sc_transcriptome doi:10.12688/f1000research.7223.1
Expand All @@ -169,6 +180,7 @@ Mapreduce doi:10.1145/1327452.1327492
Mayr2016_deep_tox doi:10.3389/fenvs.2015.00080
McHardy doi:10.1038/nmeth976
McHardy2 doi:10.7717/peerj.1603
Meissner2008 doi:10.1038/nature07107
Metaphlan doi:10.1038/nmeth.2066
Meng2016_mllib arxiv:1505.06807
Min2016_deepenhancer doi:10.1109/BIBM.2016.7822593
Expand All @@ -179,6 +191,7 @@ Mrzelj url:https://repozitorij.uni-lj.si/IzpisGradiva.php?id=85515
matis doi:10.1016/S0097-8485(96)80015-5
nbc doi:10.1093/bioinformatics/btq619
Murdoch2017_automatic arxiv:1702.02540
Nazor2012 doi:10.1016/j.stem.2012.02.013
Nemati2016_rl doi:10.1109/EMBC.2016.7591355
Ni2018 doi:10.1101/385849
Nguyen2014_adversarial arxiv:1412.1897v4
Expand All @@ -200,6 +213,7 @@ PerezSianes2016_screening doi:10.1007/978-3-319-40126-3_2
Phymm doi:10.1038/nmeth.1358
Poplin2016_deepvariant doi:10.1101/092890
Pratt2016_dr doi:10.1016/j.procs.2016.07.014
Quach2017 doi:10.18632/aging.101168
Quang2017_factor doi:10.1101/151274
Qin2017_onehot doi:10.1371/journal.pcbi.1005403
Qiu2017_graph_embedding doi:10.1101/110668
Expand All @@ -212,13 +226,17 @@ Rakhlin2018_histology doi:10.1101/259911
Ramsundar2015_multitask_drug arxiv:1502.02072
Ranganath2016_deep arxiv:1608.02158
Raina2009_gpu doi:10.1145/1553374.1553486
Relton2010 doi:10.1371/journal.pmed.1000356
Ribeiro2016_lime arxiv:1602.04938
Robertson2005 doi:10.1038/nrg1655
Rogers2010_fingerprints doi:10.1021/ci100050t
Roth2015_view_agg_cad doi:10.1109/TMI.2015.2482920
Romero2017_diet url:https://openreview.net/pdf?id=Sk-oDY9ge
Rosenberg2015_synthetic_seqs doi:10.1016/j.cell.2015.09.054
Russakovsky2015_imagenet doi:10.1007/s11263-015-0816-y
Sa2015_buckwild pmcid:PMC4907892
Salas2018_GR doi:10.1101/gr.233213.117
Salas2018 doi:10.1186/s13059-018-1448-7
Salzberg doi:10.1186/1471-2105-11-544
Schatz2010_dna_cloud doi:10.1038/nbt0710-691
Schmidhuber2014_dnn_overview doi:10.1016/j.neunet.2014.09.003
Expand Down Expand Up @@ -261,7 +279,9 @@ Tan2015_adage doi:10.1128/mSystems.00025-15
Tan2016_eadage doi:10.1101/078659
TAC-ELM doi:10.1142/S0219720012500151
TensorFlow arxiv:1603.04467
Teschendorff2017 doi:10.2217/epi-2016-0153
Tian2019 doi:10.1186/s12864-019-5488-5
Titus2017 doi:10.1093/hmg/ddx275
Torracinta2016_deep_snp doi:10.1101/097469
Torracinta2016_sim doi:10.1101/079087
Tu1996_anns doi:10.1016/S0895-4356(96)00002-9
Expand All @@ -276,6 +296,7 @@ Wang2016_protein_contact doi:10.1371/journal.pcbi.1005324
Wasson1985_clinical doi:10.1056/NEJM198509263131306
WayGreene2017_eval arxiv:1711.04828
WayGreene2017_tybalt doi:10.1101/174474
Wilhelm-Benartzi2013 doi:10.1038/bjc.2013.496
Word2Vec arxiv:1301.3781
wgsquikr doi:10.1371/journal.pone.0091784
Wu2017_molecule_net doi:10.1039/C7SC02664A
Expand All @@ -294,6 +315,7 @@ Zeng2015 doi:10.1186/s12859-015-0553-9
Zeng2016_convolutional doi:10.1093/bioinformatics/btw255
Zhang2015_multitask_tl doi:10.1145/2783258.2783304
Zhang2017_generalization arxiv:1611.03530v2
Zhang2019 doi:10.1186/s12885-019-5932-6
Zhou2015_deep_sea doi:10.1038/nmeth.3547
Zhu2016_advers_mamm doi:10.1101/095786
Zhu2016_mult_inst_mamm doi:10.1101/095794
Expand Down