Skip to content
This repository was archived by the owner on Sep 9, 2023. It is now read-only.

feat(samples): add all feature values samples #981

Merged
merged 8 commits into from
Aug 3, 2022
5 changes: 5 additions & 0 deletions samples/install-without-bom/pom.xml
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,11 @@
<version>1.1.3</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>com.google.cloud</groupId>
<artifactId>google-cloud-bigquery</artifactId>
<version>2.13.6</version>
</dependency>
</dependencies>

<!-- compile and run all snippet tests -->
Expand Down
5 changes: 5 additions & 0 deletions samples/snapshot/pom.xml
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,11 @@
<version>1.1.3</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>com.google.cloud</groupId>
<artifactId>google-cloud-bigquery</artifactId>
<version>2.13.6</version>
</dependency>
</dependencies>

<!-- compile and run all snippet tests -->
Expand Down
6 changes: 5 additions & 1 deletion samples/snippets/pom.xml
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,10 @@
<artifactId>proto-google-cloud-aiplatform-v1beta1</artifactId>
<version>0.15.7</version>
</dependency>

<dependency>
<groupId>com.google.cloud</groupId>
<artifactId>google-cloud-bigquery</artifactId>
<version>2.13.6</version>
</dependency>
</dependencies>
</project>
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
/*
* Copyright 2022 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* Create features in bulk for an existing entity type. See
* https://cloud.google.com/vertex-ai/docs/featurestore/setup
* before running the code snippet
*/

package aiplatform;

// [START aiplatform_batch_create_features_sample]

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.BatchCreateFeaturesOperationMetadata;
import com.google.cloud.aiplatform.v1.BatchCreateFeaturesRequest;
import com.google.cloud.aiplatform.v1.BatchCreateFeaturesResponse;
import com.google.cloud.aiplatform.v1.CreateFeatureRequest;
import com.google.cloud.aiplatform.v1.EntityTypeName;
import com.google.cloud.aiplatform.v1.Feature;
import com.google.cloud.aiplatform.v1.Feature.ValueType;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class BatchCreateFeaturesSample {

public static void main(String[] args)
throws IOException, InterruptedException, ExecutionException, TimeoutException {
// TODO(developer): Replace these variables before running the sample.
String project = "YOUR_PROJECT_ID";
String featurestoreId = "YOUR_FEATURESTORE_ID";
String entityTypeId = "YOUR_ENTITY_TYPE_ID";
String location = "us-central1";
String endpoint = "us-central1-aiplatform.googleapis.com:443";
int timeout = 300;
batchCreateFeaturesSample(project, featurestoreId, entityTypeId, location, endpoint, timeout);
}

static void batchCreateFeaturesSample(String project, String featurestoreId, String entityTypeId,
String location, String endpoint, int timeout)
throws IOException, InterruptedException, ExecutionException, TimeoutException {
FeaturestoreServiceSettings featurestoreServiceSettings =
FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (FeaturestoreServiceClient featurestoreServiceClient =
FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

List<CreateFeatureRequest> createFeatureRequests = new ArrayList<>();

Feature titleFeature = Feature.newBuilder().setDescription("The title of the movie")
.setValueType(ValueType.STRING).build();
Feature genresFeature = Feature.newBuilder().setDescription("The genres of the movie")
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit: change to singular genre, to me genres represents an array of genres.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Using the same features as https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/feature_store/gapic-feature-store.ipynb sample tutorial provided in SOW.
So thought it is ok, should we change it here?

Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Oh I see, let's retain it for now. It was a minor nit.

.setValueType(ValueType.STRING).build();
Feature averageRatingFeature = Feature.newBuilder()
.setDescription("The average rating for the movie, range is [1.0-5.0]")
.setValueType(ValueType.DOUBLE).build();

createFeatureRequests.add(
CreateFeatureRequest.newBuilder().setFeature(titleFeature).setFeatureId("title").build());

createFeatureRequests.add(CreateFeatureRequest.newBuilder().setFeature(genresFeature)
.setFeatureId("genres").build());

createFeatureRequests.add(CreateFeatureRequest.newBuilder().setFeature(averageRatingFeature)
.setFeatureId("average_rating").build());

BatchCreateFeaturesRequest batchCreateFeaturesRequest = BatchCreateFeaturesRequest
.newBuilder()
.setParent(EntityTypeName.of(project, location, featurestoreId, entityTypeId).toString())
.addAllRequests(createFeatureRequests).build();

OperationFuture<BatchCreateFeaturesResponse, BatchCreateFeaturesOperationMetadata>
batchCreateFeaturesFuture =
featurestoreServiceClient.batchCreateFeaturesAsync(batchCreateFeaturesRequest);
System.out.format("Operation name: %s%n",
batchCreateFeaturesFuture.getInitialFuture().get().getName());
System.out.println("Waiting for operation to finish...");
BatchCreateFeaturesResponse batchCreateFeaturesResponse =
batchCreateFeaturesFuture.get(timeout, TimeUnit.SECONDS);
System.out.println("Batch Create Features Response");
System.out.println(batchCreateFeaturesResponse);
featurestoreServiceClient.close();
}
}
}
// [END aiplatform_batch_create_features_sample]

Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
/*
* Copyright 2022 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* Batch read feature values from a featurestore, as determined by your
* read instances list file, to export data. See
* https://cloud.google.com/vertex-ai/docs/featurestore/setup before running
* the code snippet
*/

package aiplatform;

// [START aiplatform_batch_read_feature_values_sample]

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.BatchReadFeatureValuesOperationMetadata;
import com.google.cloud.aiplatform.v1.BatchReadFeatureValuesRequest;
import com.google.cloud.aiplatform.v1.BatchReadFeatureValuesRequest.EntityTypeSpec;
import com.google.cloud.aiplatform.v1.BatchReadFeatureValuesResponse;
import com.google.cloud.aiplatform.v1.BigQueryDestination;
import com.google.cloud.aiplatform.v1.CsvSource;
import com.google.cloud.aiplatform.v1.FeatureSelector;
import com.google.cloud.aiplatform.v1.FeatureValueDestination;
import com.google.cloud.aiplatform.v1.FeaturestoreName;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.IdMatcher;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class BatchReadFeatureValuesSample {

public static void main(String[] args)
throws IOException, InterruptedException, ExecutionException, TimeoutException {
// TODO(developer): Replace these variables before running the sample.
String project = "YOUR_PROJECT_ID";
String featurestoreId = "YOUR_FEATURESTORE_ID";
String entityTypeId = "YOUR_ENTITY_TYPE_ID";
String inputCsvFile = "YOU_INPUT_CSV_FILE";
String destinationTableUri = "YOUR_DESTINATION_TABLE_URI";
List<String> featureSelectorIds = Arrays.asList("title", "genres", "average_rating");
String location = "us-central1";
String endpoint = "us-central1-aiplatform.googleapis.com:443";
int timeout = 300;
batchReadFeatureValuesSample(project, featurestoreId, entityTypeId, inputCsvFile,
destinationTableUri, featureSelectorIds, location, endpoint, timeout);
}

static void batchReadFeatureValuesSample(String project, String featurestoreId,
String entityTypeId, String inputCsvFile, String destinationTableUri,
List<String> featureSelectorIds, String location, String endpoint, int timeout)
throws IOException, InterruptedException, ExecutionException, TimeoutException {
FeaturestoreServiceSettings featurestoreServiceSettings =
FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (FeaturestoreServiceClient featurestoreServiceClient =
FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

List<EntityTypeSpec> entityTypeSpecs = new ArrayList<>();

FeatureSelector featureSelector = FeatureSelector.newBuilder()
.setIdMatcher(IdMatcher.newBuilder().addAllIds(featureSelectorIds).build()).build();
EntityTypeSpec entityTypeSpec = EntityTypeSpec.newBuilder().setEntityTypeId(entityTypeId)
.setFeatureSelector(featureSelector).build();

entityTypeSpecs.add(entityTypeSpec);

BigQueryDestination bigQueryDestination =
BigQueryDestination.newBuilder().setOutputUri(destinationTableUri).build();
GcsSource gcsSource = GcsSource.newBuilder().addUris(inputCsvFile).build();
BatchReadFeatureValuesRequest batchReadFeatureValuesRequest =
BatchReadFeatureValuesRequest.newBuilder()
.setFeaturestore(FeaturestoreName.of(project, location, featurestoreId).toString())
.setCsvReadInstances(CsvSource.newBuilder().setGcsSource(gcsSource))
.setDestination(
FeatureValueDestination.newBuilder().setBigqueryDestination(bigQueryDestination))
.addAllEntityTypeSpecs(entityTypeSpecs).build();

OperationFuture<BatchReadFeatureValuesResponse, BatchReadFeatureValuesOperationMetadata>
batchReadFeatureValuesFuture =
featurestoreServiceClient.batchReadFeatureValuesAsync(batchReadFeatureValuesRequest);
System.out.format("Operation name: %s%n",
batchReadFeatureValuesFuture.getInitialFuture().get().getName());
System.out.println("Waiting for operation to finish...");
BatchReadFeatureValuesResponse batchReadFeatureValuesResponse =
batchReadFeatureValuesFuture.get(timeout, TimeUnit.SECONDS);
System.out.println("Batch Read Feature Values Response");
System.out.println(batchReadFeatureValuesResponse);
featurestoreServiceClient.close();
}
}
}
// [END aiplatform_batch_read_feature_values_sample]

Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
/*
* Copyright 2022 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* Bulk export feature values from a featurestore. See
* https://cloud.google.com/vertex-ai/docs/featurestore/setup before running
* the code snippet
*/

package aiplatform;

// [START aiplatform_export_feature_values_sample]

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.BigQueryDestination;
import com.google.cloud.aiplatform.v1.EntityTypeName;
import com.google.cloud.aiplatform.v1.ExportFeatureValuesOperationMetadata;
import com.google.cloud.aiplatform.v1.ExportFeatureValuesRequest;
import com.google.cloud.aiplatform.v1.ExportFeatureValuesRequest.FullExport;
import com.google.cloud.aiplatform.v1.ExportFeatureValuesResponse;
import com.google.cloud.aiplatform.v1.FeatureSelector;
import com.google.cloud.aiplatform.v1.FeatureValueDestination;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import com.google.cloud.aiplatform.v1.IdMatcher;
import java.io.IOException;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class ExportFeatureValuesSample {

public static void main(String[] args)
throws IOException, InterruptedException, ExecutionException, TimeoutException {
// TODO(developer): Replace these variables before running the sample.
String project = "YOUR_PROJECT_ID";
String featurestoreId = "YOUR_FEATURESTORE_ID";
String entityTypeId = "YOUR_ENTITY_TYPE_ID";
String destinationTableUri = "YOUR_DESTINATION_TABLE_URI";
List<String> featureSelectorIds = Arrays.asList("title", "genres", "average_rating");
String location = "us-central1";
String endpoint = "us-central1-aiplatform.googleapis.com:443";
int timeout = 300;
exportFeatureValuesSample(project, featurestoreId, entityTypeId, destinationTableUri,
featureSelectorIds, location, endpoint, timeout);
}

static void exportFeatureValuesSample(String project, String featurestoreId, String entityTypeId,
String destinationTableUri, List<String> featureSelectorIds, String location, String endpoint,
int timeout) throws IOException, InterruptedException, ExecutionException, TimeoutException {
FeaturestoreServiceSettings featurestoreServiceSettings =
FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (FeaturestoreServiceClient featurestoreServiceClient =
FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

FeatureSelector featureSelector = FeatureSelector.newBuilder()
.setIdMatcher(IdMatcher.newBuilder().addAllIds(featureSelectorIds).build()).build();

ExportFeatureValuesRequest exportFeatureValuesRequest =
ExportFeatureValuesRequest.newBuilder()
.setEntityType(
EntityTypeName.of(project, location, featurestoreId, entityTypeId).toString())
.setDestination(FeatureValueDestination.newBuilder().setBigqueryDestination(
BigQueryDestination.newBuilder().setOutputUri(destinationTableUri)))
.setFeatureSelector(featureSelector).setFullExport(FullExport.newBuilder()).build();

OperationFuture<ExportFeatureValuesResponse, ExportFeatureValuesOperationMetadata>
exportFeatureValuesFuture =
featurestoreServiceClient.exportFeatureValuesAsync(exportFeatureValuesRequest);
System.out.format("Operation name: %s%n",
exportFeatureValuesFuture.getInitialFuture().get().getName());
System.out.println("Waiting for operation to finish...");
ExportFeatureValuesResponse exportFeatureValuesResponse =
exportFeatureValuesFuture.get(timeout, TimeUnit.SECONDS);
System.out.println("Export Feature Values Response");
System.out.println(exportFeatureValuesResponse);
featurestoreServiceClient.close();
}
}
}
// [END aiplatform_export_feature_values_sample]

Loading