Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

backend : add eval callback #4935

Merged
merged 9 commits into from
Jan 17, 2024
49 changes: 47 additions & 2 deletions examples/simple/simple.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -6,11 +6,49 @@
#include <string>
#include <vector>

// a function that can be called for every computed node during graph evaluation
// the user can choose to whether to observe the data of the node depending on the tensor parameters
static bool observe_compute(struct ggml_tensor * t, bool ask, void * user_data) {
GGML_UNUSED(user_data);

// the scheduler is asking us if we want to observe this node
if (ask) {
// check if name contains soft_max (customize to your needs)
return strstr(t->name, "soft_max") != 0;
}

// print the node info
printf("%s: t->name = %32s, t->op = %12s, [%5d, %5d, %5d, %5d]\n",
__func__, t->name, ggml_op_name(t->op), (int) t->ne[0], (int) t->ne[1], (int) t->ne[2], (int) t->ne[3]);

// this will copy the data to host memory (if needed)
static std::vector<float> t_data;

const bool is_host = ggml_backend_buffer_is_host(t->buffer);

if (!is_host || !ggml_is_contiguous(t)) {
t_data.resize(ggml_nelements(t));
ggml_backend_tensor_get(t, t_data.data(), 0, ggml_nbytes(t));
}

const float * data = is_host ? (const float *) t->data : t_data.data();

// print first row
for (int i = 0; i < t->ne[0]; i++) {
printf("%8.4f ", data[i]);
}
printf("\n");

return true;
}

int main(int argc, char ** argv) {
gpt_params params;

bool observe = false;

if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
printf("usage: %s MODEL_PATH [PROMPT] [OBSERV]\n" , argv[0]);
return 1 ;
}

Expand All @@ -22,6 +60,10 @@ int main(int argc, char ** argv) {
params.prompt = argv[2];
}

if (argc >= 4) {
observe = atoi(argv[3]);
}

if (params.prompt.empty()) {
params.prompt = "Hello my name is";
}
Expand All @@ -37,7 +79,7 @@ int main(int argc, char ** argv) {

llama_model_params model_params = llama_model_default_params();

// model_params.n_gpu_layers = 99; // offload all layers to the GPU
model_params.n_gpu_layers = 99; // offload all layers to the GPU

llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);

Expand All @@ -55,6 +97,9 @@ int main(int argc, char ** argv) {
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;

ctx_params.cb_eval = observe ? observe_compute : NULL;
ctx_params.cb_eval_user_data = NULL;

llama_context * ctx = llama_new_context_with_model(model, ctx_params);

if (ctx == NULL) {
Expand Down
48 changes: 46 additions & 2 deletions ggml-backend.c
Original file line number Diff line number Diff line change
Expand Up @@ -802,6 +802,9 @@ struct ggml_backend_sched {
__attribute__((aligned(GGML_MEM_ALIGN)))
#endif
char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];

ggml_backend_sched_eval_callback callback_eval;
void * callback_eval_user_data;
};

#define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
Expand Down Expand Up @@ -1324,9 +1327,40 @@ static void sched_compute_splits(ggml_backend_sched_t sched) {
ggml_graph_dump_dot(split->graph, NULL, split_filename);
#endif


uint64_t compute_start_us = ggml_time_us();
ggml_backend_graph_compute(split_backend, &split->graph);
//ggml_backend_synchronize(split_backend); // necessary to measure compute time
if (!sched->callback_eval) {
ggml_backend_graph_compute(split_backend, &split->graph);
//ggml_backend_synchronize(split_backend); // necessary to measure compute time
} else {
// similar to ggml_backend_compare_graph_backend
for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
struct ggml_tensor * t = split->graph.nodes[j0];

int j1 = j0;

// determine the range [j0, j1] of nodes that can be computed together
while (j1 < split->graph.n_nodes - 1) {
// check if the user needs data from this node
if (sched->callback_eval(t, true, sched->callback_eval_user_data)) {
break;
}

t = split->graph.nodes[++j1];
}

struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);

ggml_backend_graph_compute(split_backend, &gv);

if (sched->callback_eval(t, true, sched->callback_eval_user_data) && // ask
!sched->callback_eval(t, false, sched->callback_eval_user_data)) { // eval
break;
}
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is the ask callback really necessary here?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I've changed the implementation to ask only once per node in a split


j0 = j1;
}
}
uint64_t compute_end_us = ggml_time_us();
compute_us[split_backend_id] += compute_end_us - compute_start_us;
}
Expand All @@ -1352,6 +1386,10 @@ static void sched_reset(ggml_backend_sched_t sched) {
memset(sched->node_talloc, 0, sizeof(sched->node_talloc[0]) * hash_size);
memset(sched->node_copies, 0, sizeof(sched->node_copies[0]) * hash_size);

// TODO: should we clear the callbacks?
//sched->callback_eval = NULL;
//sched->callback_eval_user_data = NULL;

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think this is fine, we don't need to clear the callbacks here, the reset function is meant to prepare the sched for the next graph evaluation, resetting the allocators and the backend assignments (similar to ggml_allocr_reset).

sched->is_reset = true;
}

Expand Down Expand Up @@ -1431,6 +1469,12 @@ void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
sched_reset(sched);
}


void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
sched->callback_eval = callback;
sched->callback_eval_user_data = user_data;
}

int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
return sched->n_splits;
}
Expand Down
11 changes: 11 additions & 0 deletions ggml-backend.h
Original file line number Diff line number Diff line change
Expand Up @@ -148,6 +148,14 @@ extern "C" {
struct ggml_backend_sched;
typedef struct ggml_backend_sched * ggml_backend_sched_t;

// when ask == true, the scheduler wants to know if the user wants to observe this node
// this allows the scheduler to batch nodes together in order to evaluate them in a single call
//
// when ask == false, the scheduler is passing the node tensor to the user for observation
// if the user returns false, the scheduler will cancel the graph compute
//
typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data);

// Initialize a backend scheduler
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size);
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
Expand All @@ -168,6 +176,9 @@ extern "C" {
// Reset all assignments and allocators - must be called before using the sched allocators to allocate inputs
GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched);

// Set a callback to be called for each resulting node during graph compute
GGML_API void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data);

//
// Utils
//
Expand Down
9 changes: 9 additions & 0 deletions llama.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1393,6 +1393,9 @@ struct llama_cparams {

bool mul_mat_q;
bool offload_kqv;

ggml_backend_sched_eval_callback cb_eval;
void * cb_eval_user_data;
};

struct llama_layer {
Expand Down Expand Up @@ -6254,6 +6257,7 @@ static int llama_decode_internal(
//printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);

ggml_backend_sched_reset(lctx.sched);
ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);

ggml_cgraph * gf = llama_build_graph(lctx, batch);

Expand Down Expand Up @@ -9267,6 +9271,8 @@ struct llama_context_params llama_context_default_params() {
/*.logits_all =*/ false,
/*.embedding =*/ false,
/*.offload_kqv =*/ true,
/*.cb_eval =*/ nullptr,
/*.cb_eval_user_data =*/ nullptr,
};

return result;
Expand Down Expand Up @@ -9401,6 +9407,9 @@ struct llama_context * llama_new_context_with_model(
hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
hparams.n_ctx_train;

cparams.cb_eval = params.cb_eval;
cparams.cb_eval_user_data = params.cb_eval_user_data;

auto rope_scaling_type = params.rope_scaling_type;
if (rope_scaling_type == LLAMA_ROPE_SCALING_UNSPECIFIED) {
rope_scaling_type = hparams.rope_scaling_type_train;
Expand Down
4 changes: 4 additions & 0 deletions llama.h
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
#define LLAMA_H

#include "ggml.h"
#include "ggml-backend.h"
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
Expand Down Expand Up @@ -239,6 +240,9 @@ extern "C" {
bool logits_all; // the llama_eval() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
bool embedding; // embedding mode only
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU

ggml_backend_sched_eval_callback cb_eval;
void * cb_eval_user_data;
};

// model quantization parameters
Expand Down
Loading