Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Ignore tokens if their IDs in added token list are below the vocab's base size #3585

Closed
wants to merge 5 commits into from
Closed
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 22 additions & 19 deletions convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -359,51 +359,54 @@ def __repr__(self) -> str:
class SentencePieceVocab:
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
vocab_size: int = self.sentencepiece_tokenizer.vocab_size()

added_tokens: dict[str, int]
if fname_added_tokens is not None:
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
else:
added_tokens = {}

vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
actual_ids = sorted(added_tokens.values())
if expected_ids != actual_ids:
raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}")
new_tokens: dict[int, str] = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
expected_new_ids: list[int] = list(range(vocab_size, vocab_size + len(new_tokens)))
actual_new_ids: list[int] = sorted(new_tokens.keys())

items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
self.added_tokens_list = [text for (text, idx) in items]
self.vocab_size_base: int = vocab_size
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
self.fname_added_tokens = fname_added_tokens
if expected_new_ids != actual_new_ids:
raise Exception(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}")

# Token pieces that were added to the base vocabulary.
self.new_tokens_list: list[str] = [new_tokens[id] for id in actual_new_ids]
self.vocab_size_base: int = vocab_size
self.vocab_size: int = self.vocab_size_base + len(self.new_tokens_list)
self.fname_tokenizer = fname_tokenizer
self.fname_added_tokens = fname_added_tokens

def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
tokenizer = self.sentencepiece_tokenizer
for i in range(tokenizer.vocab_size()):
piece = tokenizer.id_to_piece(i)
for id in range(tokenizer.vocab_size()):
piece = tokenizer.id_to_piece(id)
text: bytes = piece.encode("utf-8")
score: float = tokenizer.get_score(i)
score: float = tokenizer.get_score(id)

toktype = gguf.TokenType.NORMAL
if tokenizer.is_unknown(i):
if tokenizer.is_unknown(id):
toktype = gguf.TokenType.UNKNOWN
if tokenizer.is_control(i):
if tokenizer.is_control(id):
toktype = gguf.TokenType.CONTROL

# NOTE: I think added_tokens are user defined.
# ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
# if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED

if tokenizer.is_unused(i):
if tokenizer.is_unused(id):
toktype = gguf.TokenType.UNUSED
if tokenizer.is_byte(i):
if tokenizer.is_byte(id):
toktype = gguf.TokenType.BYTE

yield text, score, toktype

def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_list:
for text in self.new_tokens_list:
score = -1000.0
yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED

Expand Down