-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
ggml : cgraph export/import/eval example + GPU support (#108)
* ggml : cgraph export brainstorming * mnist : code style * mnist : minor * ggml : initial cgraph export * ggml : initial graph import (wip) * ggml : import op args correctly * ggml : add ggml_get_tensor_by_name() * mnist : add compute graph evaluation on CPU example * ggml : add ggml_tensor_overhead() * ggml : rename new functions to ggml_cgraph_... * mnist : add Metal inference skeleton (WIP) * mnist : working on the Metal pipeline (WIP) * mnist : prepare the Metal encoder (WIP) * mnist : first Metal kernel for F32 ADD * mnist : looks like MTLHeap does not work * mnist : initial full pass of MNIST on the GPU (not verified) * mnist : minor cleanup * mnist : full GPU inference works * mnist : use custom soft_max kernel since MPSMatrixSoftMax is bugged * mnist : use constant for soft_max instead of hardcoded 10 * mnist : check multiple predictions (Metal) * mnist : minor * ggml : move cgraph import / export to ggml * mnist : remove common dependencies * mnist : fix soft_max threadgroup size * mnist : init no_alloc member * ggml : improve "get tensor" API
- Loading branch information
Showing
8 changed files
with
1,297 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
// Use a pre-generated MNIST compute graph for inference on the CPU | ||
// | ||
// You can generate a compute graph using the "mnist" tool: | ||
// | ||
// $ ./bin/mnist ./models/mnist/ggml-model-f32.bin ../examples/mnist/models/mnist/t10k-images.idx3-ubyte | ||
// | ||
// This command creates the "mnist.ggml" file, which contains the generated compute graph. | ||
// Now, you can re-use the compute graph with the "mnist-cpu" tool: | ||
// | ||
// $ ./bin/mnist-cpu ./models/mnist/mnist.ggml ../examples/mnist/models/mnist/t10k-images.idx3-ubyte | ||
// | ||
|
||
#include "ggml/ggml.h" | ||
|
||
#include <cmath> | ||
#include <cstdio> | ||
#include <cstring> | ||
#include <ctime> | ||
#include <fstream> | ||
#include <vector> | ||
|
||
// evaluate the MNIST compute graph | ||
// | ||
// - fname_cgraph: path to the compute graph | ||
// - n_threads: number of threads to use | ||
// - digit: 784 pixel values | ||
// | ||
// returns 0 - 9 prediction | ||
int mnist_eval( | ||
const char * fname_cgraph, | ||
const int n_threads, | ||
std::vector<float> digit | ||
) { | ||
// load the compute graph | ||
struct ggml_context * ctx_data = NULL; | ||
struct ggml_context * ctx_eval = NULL; | ||
|
||
struct ggml_cgraph gfi = ggml_graph_import(fname_cgraph, &ctx_data, &ctx_eval); | ||
gfi.n_threads = n_threads; | ||
|
||
// allocate eval context | ||
// needed during ggml_graph_compute() to allocate a work tensor | ||
static size_t buf_size = gfi.work_size; // TODO | ||
static void * buf = malloc(buf_size); | ||
|
||
struct ggml_init_params params = { | ||
.mem_size = buf_size, | ||
.mem_buffer = buf, | ||
.no_alloc = false, | ||
}; | ||
|
||
struct ggml_context * ctx0 = ggml_init(params); | ||
|
||
struct ggml_tensor * input = ggml_graph_get_tensor(&gfi, "input"); | ||
memcpy(input->data, digit.data(), ggml_nbytes(input)); | ||
|
||
ggml_graph_compute(ctx0, &gfi); | ||
|
||
const float * probs_data = ggml_get_data_f32(ggml_graph_get_tensor(&gfi, "probs")); | ||
|
||
const int prediction = std::max_element(probs_data, probs_data + 10) - probs_data; | ||
|
||
ggml_free(ctx0); | ||
ggml_free(ctx_data); | ||
ggml_free(ctx_eval); | ||
|
||
return prediction; | ||
} | ||
|
||
int main(int argc, char ** argv) { | ||
srand(time(NULL)); | ||
ggml_time_init(); | ||
|
||
if (argc != 3) { | ||
fprintf(stderr, "Usage: %s models/mnist/mnist.ggml models/mnist/t10k-images.idx3-ubyte\n", argv[0]); | ||
exit(0); | ||
} | ||
|
||
uint8_t buf[784]; | ||
std::vector<float> digit; | ||
|
||
// read a random digit from the test set | ||
{ | ||
std::ifstream fin(argv[2], std::ios::binary); | ||
if (!fin) { | ||
fprintf(stderr, "%s: failed to open '%s'\n", __func__, argv[2]); | ||
return 1; | ||
} | ||
|
||
// seek to a random digit: 16-byte header + 28*28 * (random 0 - 10000) | ||
fin.seekg(16 + 784 * (rand() % 10000)); | ||
fin.read((char *) &buf, sizeof(buf)); | ||
} | ||
|
||
// render the digit in ASCII | ||
{ | ||
digit.resize(sizeof(buf)); | ||
|
||
for (int row = 0; row < 28; row++) { | ||
for (int col = 0; col < 28; col++) { | ||
fprintf(stderr, "%c ", (float)buf[row*28 + col] > 230 ? '*' : '_'); | ||
digit[row*28 + col] = ((float)buf[row*28 + col]); | ||
} | ||
|
||
fprintf(stderr, "\n"); | ||
} | ||
|
||
fprintf(stderr, "\n"); | ||
} | ||
|
||
const int prediction = mnist_eval(argv[1], 1, digit); | ||
|
||
fprintf(stdout, "%s: predicted digit is %d\n", __func__, prediction); | ||
|
||
return 0; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
// Use a pre-generated MNIST compute graph for inference on the M1 GPU via MPS | ||
// | ||
// You can generate a compute graph using the "mnist" tool: | ||
// | ||
// $ ./bin/mnist ./models/mnist/ggml-model-f32.bin ../examples/mnist/models/mnist/t10k-images.idx3-ubyte | ||
// | ||
// This command creates the "mnist.ggml" file, which contains the generated compute graph. | ||
// Now, you can re-use the compute graph on the GPU with the "mnist-mtl" tool: | ||
// | ||
// $ ./bin/mnist-mtl ./models/mnist/mnist.ggml ../examples/mnist/models/mnist/t10k-images.idx3-ubyte | ||
// | ||
|
||
#include "ggml/ggml.h" | ||
|
||
#include "main-mtl.h" | ||
|
||
#include <cmath> | ||
#include <cstdio> | ||
#include <cstring> | ||
#include <ctime> | ||
#include <fstream> | ||
#include <vector> | ||
|
||
// evaluate the MNIST compute graph | ||
// | ||
// - fname_cgraph: path to the compute graph | ||
// - n_threads: number of threads to use | ||
// - digit: 784 pixel values | ||
// | ||
// returns 0 - 9 prediction | ||
int mnist_eval( | ||
const char * fname_cgraph, | ||
const int n_threads, | ||
std::vector<float> digit | ||
) { | ||
// load the compute graph | ||
struct ggml_context * ctx_data = NULL; | ||
struct ggml_context * ctx_eval = NULL; | ||
|
||
struct ggml_cgraph gf = ggml_graph_import(fname_cgraph, &ctx_data, &ctx_eval); | ||
gf.n_threads = n_threads; | ||
|
||
// allocate eval context | ||
// needed during ggml_graph_compute() to allocate a work tensor | ||
static size_t buf_size = gf.work_size; // TODO | ||
static void * buf = malloc(buf_size); | ||
|
||
struct ggml_init_params params = { | ||
.mem_size = buf_size, | ||
.mem_buffer = buf, | ||
.no_alloc = false, | ||
}; | ||
|
||
struct ggml_context * ctx_work = ggml_init(params); | ||
|
||
// this allocates all Metal resources and memory buffers | ||
auto ctx_mtl = mnist_mtl_init(ctx_data, ctx_eval, ctx_work, &gf); | ||
|
||
int prediction = -1; | ||
|
||
for (int i = 0; i < 1; ++i) { | ||
struct ggml_tensor * input = ggml_graph_get_tensor(&gf, "input"); | ||
|
||
if (i % 2 == 0) { | ||
memcpy(input->data, digit.data(), ggml_nbytes(input)); | ||
} else { | ||
memset(input->data, 0, ggml_nbytes(input)); | ||
} | ||
|
||
// the actual inference happens here | ||
prediction = mnist_mtl_eval(ctx_mtl, &gf); | ||
} | ||
|
||
mnist_mtl_free(ctx_mtl); | ||
|
||
ggml_free(ctx_work); | ||
ggml_free(ctx_data); | ||
ggml_free(ctx_eval); | ||
|
||
return prediction; | ||
} | ||
|
||
int main(int argc, char ** argv) { | ||
srand(time(NULL)); | ||
ggml_time_init(); | ||
|
||
if (argc != 3) { | ||
fprintf(stderr, "Usage: %s models/mnist/mnist.ggml models/mnist/t10k-images.idx3-ubyte\n", argv[0]); | ||
exit(0); | ||
} | ||
|
||
uint8_t buf[784]; | ||
std::vector<float> digit; | ||
|
||
// read a random digit from the test set | ||
{ | ||
std::ifstream fin(argv[2], std::ios::binary); | ||
if (!fin) { | ||
fprintf(stderr, "%s: failed to open '%s'\n", __func__, argv[2]); | ||
return 1; | ||
} | ||
|
||
// seek to a random digit: 16-byte header + 28*28 * (random 0 - 10000) | ||
fin.seekg(16 + 784 * (rand() % 10000)); | ||
fin.read((char *) &buf, sizeof(buf)); | ||
} | ||
|
||
// render the digit in ASCII | ||
{ | ||
digit.resize(sizeof(buf)); | ||
|
||
for (int row = 0; row < 28; row++) { | ||
for (int col = 0; col < 28; col++) { | ||
fprintf(stderr, "%c ", (float)buf[row*28 + col] > 230 ? '*' : '_'); | ||
digit[row*28 + col] = ((float)buf[row*28 + col]); | ||
} | ||
|
||
fprintf(stderr, "\n"); | ||
} | ||
|
||
fprintf(stderr, "\n"); | ||
} | ||
|
||
const int prediction = mnist_eval(argv[1], 1, digit); | ||
|
||
fprintf(stdout, "%s: predicted digit is %d\n", __func__, prediction); | ||
|
||
return 0; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
#pragma once | ||
|
||
struct ggml_context; | ||
struct ggml_cgraph; | ||
|
||
#ifdef __cplusplus | ||
extern "C" { | ||
#endif | ||
|
||
struct ggml_mtl_context; | ||
|
||
struct ggml_mtl_context * mnist_mtl_init( | ||
struct ggml_context * ctx_data, | ||
struct ggml_context * ctx_eval, | ||
struct ggml_context * ctx_work, | ||
struct ggml_cgraph * gf); | ||
|
||
void mnist_mtl_free(struct ggml_mtl_context * ctx); | ||
|
||
int mnist_mtl_eval( | ||
struct ggml_mtl_context * ctx, | ||
struct ggml_cgraph * gf); | ||
|
||
#ifdef __cplusplus | ||
} | ||
#endif |
Oops, something went wrong.