Skip to content

Commit

Permalink
ggml: aarch64: implement smmla kernel for q4_1_q8_1 quantized gemm
Browse files Browse the repository at this point in the history
armv8.2-a and above supports MMLA instructions that have better
throughput than DOT. this commit adds support for mmla kernel for
q4_1_q8_1 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.
  • Loading branch information
snadampal committed Jan 22, 2024
1 parent ea29dec commit f434e52
Show file tree
Hide file tree
Showing 2 changed files with 78 additions and 1 deletion.
76 changes: 75 additions & 1 deletion ggml-quants.c
Original file line number Diff line number Diff line change
Expand Up @@ -3979,14 +3979,87 @@ void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * vx[res
const int nb = n / qk;

assert(n % qk == 0);
#if defined(__ARM_FEATURE_MATMUL_INT8)
assert(nrc <= MAX_NUM_ROWS_COLS_ARM_MATMUL_INT8);
#else
assert(nrc == MAX_NUM_ROWS_COLS_DOT_PRODUCT);
UNUSED(nrc);
#endif

const block_q4_1 * restrict x = vx[0];
const block_q8_1 * restrict y = vy[0];

#if defined(__ARM_FEATURE_MATMUL_INT8)
if (nrc == 2) {
const block_q4_1 * restrict vx0 = vx[0];
const block_q4_1 * restrict vx1 = vx[1];
const block_q8_1 * restrict vy0 = vy[0];
const block_q8_1 * restrict vy1 = vy[1];

float32x4_t sumv0 = vdupq_n_f32(0.0f);
float32x4_t summs0 = vdupq_n_f32(0.0f);

for (int i = 0; i < nb; i++) {
const block_q4_1 * restrict b_x0 = &vx0[i];
const block_q4_1 * restrict b_x1 = &vx1[i];
const block_q8_1 * restrict b_y0 = &vy0[i];
const block_q8_1 * restrict b_y1 = &vy1[i];

float32x4_t summs_t = {GGML_FP16_TO_FP32(b_x0->m) * b_y0->s,
GGML_FP16_TO_FP32(b_x1->m) * b_y0->s,
GGML_FP16_TO_FP32(b_x0->m) * b_y1->s,
GGML_FP16_TO_FP32(b_x1->m) * b_y1->s};
summs0 += summs_t;

const uint8x16_t m4b = vdupq_n_u8(0x0F);

const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);

// 4-bit -> 8-bit
const int8x16_t x0_l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
const int8x16_t x0_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
const int8x16_t x1_l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
const int8x16_t x1_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));

// load y
const int8x16_t y0_l = vld1q_s8(b_y0->qs);
const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
const int8x16_t y1_l = vld1q_s8(b_y1->qs);
const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);

// mmla into int32x4_t
float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};

int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));

int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));

int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));

int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));

sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
l1, r1)), l2, r2)), l3, r3))), scale);
}

float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
sumv2 = sumv2 + summs0;

vst1_f32(s, vget_low_f32(sumv2));
vst1_f32(s + 16, vget_high_f32(sumv2));
} else
#endif
// TODO: add WASM SIMD
#if defined(__ARM_NEON)
{
float32x4_t sumv0 = vdupq_n_f32(0.0f);
float32x4_t sumv1 = vdupq_n_f32(0.0f);

Expand Down Expand Up @@ -4028,6 +4101,7 @@ void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * vx[res
}

*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
}
#elif defined(__AVX2__) || defined(__AVX__)
// Initialize accumulator with zeros
__m256 acc = _mm256_setzero_ps();
Expand Down
3 changes: 3 additions & 0 deletions ggml.c
Original file line number Diff line number Diff line change
Expand Up @@ -456,6 +456,9 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
.from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
.vec_dot = ggml_vec_dot_q4_1_q8_1,
.vec_dot_type = GGML_TYPE_Q8_1,
#if defined (__ARM_FEATURE_MATMUL_INT8)
.hw_matmul = true,
#endif
},
[4] = { // GGML_TYPE_Q4_2
.type_name = "DEPRECATED",
Expand Down

0 comments on commit f434e52

Please sign in to comment.