-
-
Notifications
You must be signed in to change notification settings - Fork 2.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Fine-tuning t5-base model raises an error #1661
Comments
Did you solve the error? I am also facing the same bug |
This issue has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions. |
I have a working solution for it, will prepare a PR for that soon, so re-opening it! |
Hi @stefan-it , is there any updates on the PR? error still persists |
I am facing the same issue for mt5-small one.. Can anyone fix this if yes please your guidance is always welcome.. Thanks in advance. |
When I am testing with this branch the same error is occurring.. Please
help me out. Thanks in advance. Please find the following log
2022-08-08 20:25:36,116
----------------------------------------------------------------------------------------------------
2022-08-08 20:25:36,117 Corpus: "MultiCorpus: 644 train + 92 dev + 186 test
sentences - ColumnCorpus Corpus: 644 train + 92 dev + 186 test sentences -
/root/.flair/datasets/ner_masakhane/luo" 2022-08-08 20:25:36,117
----------------------------------------------------------------------------------------------------
2022-08-08 20:25:36,117 Parameters: 2022-08-08 20:25:36,117 -
learning_rate: "0.000050" 2022-08-08 20:25:36,117 - mini_batch_size: "4"
2022-08-08 20:25:36,117 - patience: "3" 2022-08-08 20:25:36,117 -
anneal_factor: "0.5" 2022-08-08 20:25:36,117 - max_epochs: "10" 2022-08-08
20:25:36,117 - shuffle: "True" 2022-08-08 20:25:36,117 - train_with_dev:
"False" 2022-08-08 20:25:36,118 - batch_growth_annealing: "False"
2022-08-08 20:25:36,118
----------------------------------------------------------------------------------------------------
2022-08-08 20:25:36,118 Model training base path: "conll-03-t5-base"
2022-08-08 20:25:36,118
----------------------------------------------------------------------------------------------------
2022-08-08 20:25:36,118 Device: cuda:0 2022-08-08 20:25:36,118
----------------------------------------------------------------------------------------------------
2022-08-08 20:25:36,118 Embeddings storage mode: none 2022-08-08
20:25:36,118
----------------------------------------------------------------------------------------------------
Traceback (most recent call last): File "run_ner.py", line 158, in <module>
main() File "run_ner.py", line 147, in main
weight_decay=training_args.weight_decay, File
"/usr/local/lib/python3.7/dist-packages/flair/trainers/trainer.py", line
909, in fine_tune **trainer_args, File
"/usr/local/lib/python3.7/dist-packages/flair/trainers/trainer.py", line
500, in train loss = self.model.forward_loss(batch_step) File
"/usr/local/lib/python3.7/dist-packages/flair/models/sequence_tagger_model.py",
line 270, in forward_loss scores, gold_labels = self.forward(sentences) #
type: ignore File
"/usr/local/lib/python3.7/dist-packages/flair/models/sequence_tagger_model.py",
line 282, in forward self.embeddings.embed(sentences) File
"/usr/local/lib/python3.7/dist-packages/flair/embeddings/base.py", line 62,
in embed self._add_embeddings_internal(data_points) File
"/usr/local/lib/python3.7/dist-packages/flair/embeddings/base.py", line
766, in _add_embeddings_internal
self._add_embeddings_to_sentences(expanded_sentences) File
"/usr/local/lib/python3.7/dist-packages/flair/embeddings/base.py", line
692, in _add_embeddings_to_sentences hidden_states = self.model(input_ids,
**model_kwargs)[-1] File
"/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line
1130, in _call_impl return forward_call(*input, **kwargs) File
"/usr/local/lib/python3.7/dist-packages/transformers/models/t5/modeling_t5.py",
line 1438, in forward return_dict=return_dict, File
"/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line
1130, in _call_impl return forward_call(*input, **kwargs) File
"/usr/local/lib/python3.7/dist-packages/transformers/models/t5/modeling_t5.py",
line 932, in forward raise ValueError(f"You have to specify either
{err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") ValueError:
You have to specify either decoder_input_ids or decoder_inputs_embeds
…On Mon, Aug 8, 2022 at 4:27 PM Stefan Schweter ***@***.***> wrote:
Hi @ataniz <https://github.com/ataniz> and @Madhu000
<https://github.com/Madhu000> ,
sorry for the late reply! I pushed a working version of encoder-only
fine-tuning T5 models:
#2896 <#2896>
Feel free to test it 🤗
—
Reply to this email directly, view it on GitHub
<#1661 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AKCHYN4O7TPV3EMWRMUATOLVYDR2BANCNFSM4NRTN36Q>
.
You are receiving this because you were mentioned.Message ID:
***@***.***>
|
Hi @Madhu000 , it seems that Flair in your virtual environment uses the installed 0.11 version (this can be seen in the logs, because pip3 uninstall flair
git clone https://github.com/flairNLP/flair.git
cd flair
git checkout add-t5-encoder-support
pip3 install -e . Then you can try using it again :) |
Thanks, I'll check it out.
…On Tue, Aug 9, 2022 at 2:17 AM Stefan Schweter ***@***.***> wrote:
Hi @Madhu000 <https://github.com/Madhu000> ,
it seems that Flair in your virtual environment uses the installed *0.11*
version (this can be seen in the logs, because flair/embeddings/base.py
do not have a line 692 in latest master
<https://github.com/flairNLP/flair/blob/master/flair/embeddings/base.py>
due to a recent refactoring). Here's a short snippet of how to use the T5
encoder fix branch:
pip3 uninstall flair
git clone https://github.com/flairNLP/flair.gitcd flair
git checkout add-t5-encoder-support
pip3 install -e .
Then you can try using it again :)
—
Reply to this email directly, view it on GitHub
<#1661 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AKCHYN2TZSNBWVGYONIMVJ3VYFW5LANCNFSM4NRTN36Q>
.
You are receiving this because you were mentioned.Message ID:
***@***.***>
|
This issue has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions. |
Hi,
I tried to fine-tune T5-base model on google colab and get this error
ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
To be more specific where the error happens, it happens at the very moment when the training should start:
2020-06-03 12:07:25,877 ----------------------------------------------------------------------------------------------------
2020-06-03 12:07:25,877 Corpus: "Corpus: 4800 train + 1200 dev + 20630 test sentences"
2020-06-03 12:07:25,878 ----------------------------------------------------------------------------------------------------
2020-06-03 12:07:25,878 Parameters:
2020-06-03 12:07:25,878 - learning_rate: "3e-06"
2020-06-03 12:07:25,879 - mini_batch_size: "8"
2020-06-03 12:07:25,879 - patience: "3"
2020-06-03 12:07:25,879 - anneal_factor: "0.5"
2020-06-03 12:07:25,880 - max_epochs: "4"
2020-06-03 12:07:25,880 - shuffle: "True"
2020-06-03 12:07:25,880 - train_with_dev: "False"
2020-06-03 12:07:25,880 - batch_growth_annealing: "False"
2020-06-03 12:07:25,880 ----------------------------------------------------------------------------------------------------
2020-06-03 12:07:25,880 Model training base path: "semeval_data/model_sentiment_0"
2020-06-03 12:07:25,880 ----------------------------------------------------------------------------------------------------
2020-06-03 12:07:25,880 Device: cuda:0
2020-06-03 12:07:25,881 ----------------------------------------------------------------------------------------------------
2020-06-03 12:07:25,881 Embeddings storage mode: cpu
2020-06-03 12:07:25,883 ----------------------------------------------------------------------------------------------------
Traceback (most recent call last):
File "./model_train.py", line 138, in
shuffle=True,
File "/usr/local/lib/python3.6/dist-packages/flair/trainers/trainer.py", line 349, in train
loss = self.model.forward_loss(batch_step)
File "/usr/local/lib/python3.6/dist-packages/flair/models/text_classification_model.py", line 142, in forward_loss
scores = self.forward(data_points)
File "/usr/local/lib/python3.6/dist-packages/flair/models/text_classification_model.py", line 98, in forward
self.document_embeddings.embed(sentences)
File "/usr/local/lib/python3.6/dist-packages/flair/embeddings/base.py", line 59, in embed
self._add_embeddings_internal(sentences)
File "/usr/local/lib/python3.6/dist-packages/flair/embeddings/document.py", line 91, in _add_embeddings_internal
self._add_embeddings_to_sentences(batch)
File "/usr/local/lib/python3.6/dist-packages/flair/embeddings/document.py", line 136, in _add_embeddings_to_sentences
else self.model(input_ids)[-1]
File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 550, in call
result = self.forward(*input, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/transformers/modeling_t5.py", line 955, in forward
use_cache=use_cache,
File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 550, in call
result = self.forward(*input, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/transformers/modeling_t5.py", line 674, in forward
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
ValueError: You have to specify either decoder_input_ids or decoder_inputs_embeds
To Reproduce
Go to google colab, create a new project with gpu and do the following:
!git clone https://github.com/krzysztoffiok/twitter_sentiment
!pip3 install flair
!pip3 install datatable
cd twitter_sentiment
!python3 ./semeval_data_splitter.py
!python3 ./model_train.py --dataset=semeval --k_folds=5 --test_run=t5-base --fine_tune
Expected behavior
the script should start training (fine tuning) a list of models, the first given is t5-base
Environment (please complete the following information):
google colab GPU runtime
!nvidia-smi
Wed Jun 3 12:11:08 2020
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 440.82 Driver Version: 418.67 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla K80 Off | 00000000:00:04.0 Off | 0 |
| N/A 36C P8 26W / 149W | 0MiB / 11441MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
!pip3 freeze returns:
absl-py==0.9.0
alabaster==0.7.12
albumentations==0.1.12
altair==4.1.0
asgiref==3.2.7
astor==0.8.1
astropy==4.0.1.post1
astunparse==1.6.3
atari-py==0.2.6
atomicwrites==1.4.0
attrs==19.3.0
audioread==2.1.8
autograd==1.3
Babel==2.8.0
backcall==0.1.0
beautifulsoup4==4.6.3
bleach==3.1.5
blessed==1.17.6
blis==0.4.1
bokeh==1.4.0
boto==2.49.0
boto3==1.13.19
botocore==1.16.19
Bottleneck==1.3.2
bpemb==0.3.0
branca==0.4.1
bs4==0.0.1
CacheControl==0.12.6
cachetools==3.1.1
catalogue==1.0.0
certifi==2020.4.5.1
cffi==1.14.0
chainer==6.5.0
chardet==3.0.4
click==7.1.2
cloudpickle==1.3.0
cmake==3.12.0
cmdstanpy==0.4.0
colorama==0.4.3
colorlover==0.3.0
community==1.0.0b1
contextlib2==0.5.5
convertdate==2.2.1
coverage==3.7.1
coveralls==0.5
crcmod==1.7
cufflinks==0.17.3
cupy-cuda101==6.5.0
cvxopt==1.2.5
cvxpy==1.0.31
cycler==0.10.0
cymem==2.0.3
Cython==0.29.19
daft==0.0.4
dask==2.12.0
dataclasses==0.7
datascience==0.10.6
datatable==0.10.1
decorator==4.4.2
defusedxml==0.6.0
Deprecated==1.2.10
descartes==1.1.0
dill==0.3.1.1
distributed==1.25.3
Django==3.0.6
dlib==19.18.0
docopt==0.6.2
docutils==0.15.2
dopamine-rl==1.0.5
earthengine-api==0.1.223
easydict==1.9
ecos==2.0.7.post1
editdistance==0.5.3
en-core-web-sm==2.2.5
entrypoints==0.3
ephem==3.7.7.1
et-xmlfile==1.0.1
fa2==0.3.5
fancyimpute==0.4.3
fastai==1.0.61
fastdtw==0.3.4
fastprogress==0.2.3
fastrlock==0.4
fbprophet==0.6
feather-format==0.4.1
featuretools==0.4.1
filelock==3.0.12
firebase-admin==4.1.0
fix-yahoo-finance==0.0.22
flair==0.5
Flask==1.1.2
folium==0.8.3
fsspec==0.7.4
future==0.16.0
gast==0.3.3
GDAL==2.2.2
gdown==3.6.4
gensim==3.6.0
geographiclib==1.50
geopy==1.17.0
gin-config==0.3.0
glob2==0.7
google==2.0.3
google-api-core==1.16.0
google-api-python-client==1.7.12
google-auth==1.7.2
google-auth-httplib2==0.0.3
google-auth-oauthlib==0.4.1
google-cloud-bigquery==1.21.0
google-cloud-core==1.0.3
google-cloud-datastore==1.8.0
google-cloud-firestore==1.7.0
google-cloud-language==1.2.0
google-cloud-storage==1.18.1
google-cloud-translate==1.5.0
google-colab==1.0.0
google-pasta==0.2.0
google-resumable-media==0.4.1
googleapis-common-protos==1.51.0
googledrivedownloader==0.4
graphviz==0.10.1
grpcio==1.29.0
gspread==3.0.1
gspread-dataframe==3.0.7
gym==0.17.2
h5py==2.10.0
HeapDict==1.0.1
holidays==0.9.12
html5lib==1.0.1
httpimport==0.5.18
httplib2==0.17.4
httplib2shim==0.0.3
humanize==0.5.1
hyperopt==0.1.2
ideep4py==2.0.0.post3
idna==2.9
image==1.5.32
imageio==2.4.1
imagesize==1.2.0
imbalanced-learn==0.4.3
imblearn==0.0
imgaug==0.2.9
importlib-metadata==1.6.0
imutils==0.5.3
inflect==2.1.0
intel-openmp==2020.0.133
intervaltree==2.1.0
ipykernel==4.10.1
ipython==5.5.0
ipython-genutils==0.2.0
ipython-sql==0.3.9
ipywidgets==7.5.1
itsdangerous==1.1.0
jax==0.1.68
jaxlib==0.1.47
jdcal==1.4.1
jedi==0.17.0
jieba==0.42.1
Jinja2==2.11.2
jmespath==0.10.0
joblib==0.15.1
jpeg4py==0.1.4
jsonschema==2.6.0
jupyter==1.0.0
jupyter-client==5.3.4
jupyter-console==5.2.0
jupyter-core==4.6.3
kaggle==1.5.6
kapre==0.1.3.1
Keras==2.3.1
Keras-Applications==1.0.8
Keras-Preprocessing==1.1.2
keras-vis==0.4.1
kiwisolver==1.2.0
knnimpute==0.1.0
langdetect==1.0.8
librosa==0.6.3
lightgbm==2.2.3
llvmlite==0.31.0
lmdb==0.98
lucid==0.3.8
LunarCalendar==0.0.9
lxml==4.2.6
Markdown==3.2.2
MarkupSafe==1.1.1
matplotlib==3.2.1
matplotlib-venn==0.11.5
missingno==0.4.2
mistune==0.8.4
mizani==0.6.0
mkl==2019.0
mlxtend==0.14.0
more-itertools==8.3.0
moviepy==0.2.3.5
mpld3==0.3
mpmath==1.1.0
msgpack==1.0.0
multiprocess==0.70.9
multitasking==0.0.9
murmurhash==1.0.2
music21==5.5.0
natsort==5.5.0
nbconvert==5.6.1
nbformat==5.0.6
networkx==2.4
nibabel==3.0.2
nltk==3.2.5
notebook==5.2.2
np-utils==0.5.12.1
numba==0.48.0
numexpr==2.7.1
numpy==1.18.4
nvidia-ml-py3==7.352.0
oauth2client==4.1.3
oauthlib==3.1.0
okgrade==0.4.3
opencv-contrib-python==4.1.2.30
opencv-python==4.1.2.30
openpyxl==2.5.9
opt-einsum==3.2.1
osqp==0.6.1
packaging==20.4
palettable==3.3.0
pandas==1.0.4
pandas-datareader==0.8.1
pandas-gbq==0.11.0
pandas-profiling==1.4.1
pandocfilters==1.4.2
parso==0.7.0
pathlib==1.0.1
patsy==0.5.1
pexpect==4.8.0
pickleshare==0.7.5
Pillow==7.0.0
pip-tools==4.5.1
plac==1.1.3
plotly==4.4.1
plotnine==0.6.0
pluggy==0.13.1
portpicker==1.3.1
prefetch-generator==1.0.1
preshed==3.0.2
prettytable==0.7.2
progressbar2==3.38.0
prometheus-client==0.8.0
promise==2.3
prompt-toolkit==1.0.18
protobuf==3.10.0
psutil==5.4.8
psycopg2==2.7.6.1
ptvsd==5.0.0a12
ptyprocess==0.6.0
py==1.8.1
pyarrow==0.14.1
pyasn1==0.4.8
pyasn1-modules==0.2.8
pycocotools==2.0.0
pycparser==2.20
pydata-google-auth==1.1.0
pydot==1.3.0
pydot-ng==2.0.0
pydotplus==2.0.2
PyDrive==1.3.1
pyemd==0.5.1
pyglet==1.5.0
Pygments==2.1.3
pygobject==3.26.1
pymc3==3.7
PyMeeus==0.3.7
pymongo==3.10.1
pymystem3==0.2.0
PyOpenGL==3.1.5
pyparsing==2.4.7
pyrsistent==0.16.0
pysndfile==1.3.8
PySocks==1.7.1
pystan==2.19.1.1
pytest==5.4.3
python-apt==1.6.5+ubuntu0.2
python-chess==0.23.11
python-dateutil==2.8.1
python-louvain==0.14
python-slugify==4.0.0
python-utils==2.4.0
pytz==2018.9
PyWavelets==1.1.1
PyYAML==3.13
pyzmq==19.0.1
qtconsole==4.7.4
QtPy==1.9.0
regex==2019.12.20
requests==2.23.0
requests-oauthlib==1.3.0
resampy==0.2.2
retrying==1.3.3
rpy2==3.2.7
rsa==4.0
s3fs==0.4.2
s3transfer==0.3.3
sacremoses==0.0.43
scikit-image==0.16.2
scikit-learn==0.22.2.post1
scipy==1.4.1
screen-resolution-extra==0.0.0
scs==2.1.2
seaborn==0.10.1
segtok==1.5.10
Send2Trash==1.5.0
sentencepiece==0.1.91
setuptools-git==1.2
Shapely==1.7.0
simplegeneric==0.8.1
six==1.12.0
sklearn==0.0
sklearn-pandas==1.8.0
smart-open==2.0.0
snowballstemmer==2.0.0
sortedcontainers==2.1.0
spacy==2.2.4
Sphinx==1.8.5
sphinxcontrib-websupport==1.2.2
SQLAlchemy==1.3.17
sqlitedict==1.6.0
sqlparse==0.3.1
srsly==1.0.2
statsmodels==0.10.2
sympy==1.1.1
tables==3.4.4
tabulate==0.8.7
tbb==2020.0.133
tblib==1.6.0
tensorboard==2.2.2
tensorboard-plugin-wit==1.6.0.post3
tensorboardcolab==0.0.22
tensorflow==2.2.0
tensorflow-addons==0.8.3
tensorflow-datasets==2.1.0
tensorflow-estimator==2.2.0
tensorflow-gcs-config==2.1.8
tensorflow-hub==0.8.0
tensorflow-metadata==0.22.1
tensorflow-privacy==0.2.2
tensorflow-probability==0.10.0
termcolor==1.1.0
terminado==0.8.3
testpath==0.4.4
text-unidecode==1.3
textblob==0.15.3
textgenrnn==1.4.1
Theano==1.0.4
thinc==7.4.0
tifffile==2020.5.30
tokenizers==0.7.0
toolz==0.10.0
torch==1.5.0+cu101
torchsummary==1.5.1
torchtext==0.3.1
torchvision==0.6.0+cu101
tornado==4.5.3
tqdm==4.41.1
traitlets==4.3.3
transformers==2.11.0
tweepy==3.6.0
typeguard==2.7.1
typesentry==0.2.7
typing==3.6.6
typing-extensions==3.6.6
tzlocal==1.5.1
umap-learn==0.4.3
uritemplate==3.0.1
urllib3==1.24.3
vega-datasets==0.8.0
wasabi==0.6.0
wcwidth==0.1.9
webencodings==0.5.1
Werkzeug==1.0.1
widgetsnbextension==3.5.1
wordcloud==1.5.0
wrapt==1.12.1
xarray==0.15.1
xgboost==0.90
xkit==0.0.0
xlrd==1.1.0
xlwt==1.3.0
yellowbrick==0.9.1
zict==2.0.0
zipp==3.1.0
The text was updated successfully, but these errors were encountered: