Skip to content

Commit

Permalink
Merge pull request #2086 from flairNLP/GH-2085-TFIDFDocumentEmbeddings
Browse files Browse the repository at this point in the history
Added the DocumentTFIDFEmbeddings
  • Loading branch information
alanakbik authored Feb 2, 2021
2 parents 69a4921 + dd2c3db commit 43d481f
Show file tree
Hide file tree
Showing 2 changed files with 47 additions and 1 deletion.
3 changes: 2 additions & 1 deletion flair/embeddings/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@
from .document import DocumentEmbeddings
from .document import TransformerDocumentEmbeddings
from .document import DocumentPoolEmbeddings
from .document import DocumentTFIDFEmbeddings
from .document import DocumentRNNEmbeddings
from .document import DocumentLMEmbeddings
from .document import SentenceTransformerDocumentEmbeddings
Expand All @@ -47,4 +48,4 @@
from .legacy import BertEmbeddings
from .legacy import DocumentMeanEmbeddings
from .legacy import DocumentLSTMEmbeddings
from .legacy import ELMoTransformerEmbeddings
from .legacy import ELMoTransformerEmbeddings
45 changes: 45 additions & 0 deletions flair/embeddings/document.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,8 @@
from flair.embeddings.token import TokenEmbeddings, StackedEmbeddings, FlairEmbeddings
from flair.nn import LockedDropout, WordDropout

from sklearn.feature_extraction.text import TfidfVectorizer

log = logging.getLogger("flair")


Expand Down Expand Up @@ -333,6 +335,49 @@ def extra_repr(self):
return f"fine_tune_mode={self.fine_tune_mode}, pooling={self.pooling}"


class DocumentTFIDFEmbeddings(DocumentEmbeddings):
def __init__(
self,
train_dataset,
**vectorizer_params,
):
"""The constructor for DocumentTFIDFEmbeddings.
:param train_dataset: the train dataset which will be used to construct vectorizer
:param vectorizer_params: parameters given to Scikit-learn's TfidfVectorizer constructor
"""
super().__init__()

import numpy as np
self.vectorizer = TfidfVectorizer(dtype=np.float32, **vectorizer_params)
self.vectorizer.fit([s.to_original_text() for s in train_dataset])

self.__embedding_length: int = len(self.vectorizer.vocabulary_)

self.to(flair.device)

self.name: str = f"document_tfidf"

@property
def embedding_length(self) -> int:
return self.__embedding_length

def embed(self, sentences: Union[List[Sentence], Sentence]):
"""Add embeddings to every sentence in the given list of sentences."""

# if only one sentence is passed, convert to list of sentence
if isinstance(sentences, Sentence):
sentences = [sentences]

raw_sentences = [s.to_original_text() for s in sentences]
tfidf_vectors = torch.from_numpy(self.vectorizer.transform(raw_sentences).A)

for sentence_id, sentence in enumerate(sentences):
sentence.set_embedding(self.name, tfidf_vectors[sentence_id])

def _add_embeddings_internal(self, sentences: List[Sentence]):
pass


class DocumentRNNEmbeddings(DocumentEmbeddings):
def __init__(
self,
Expand Down

0 comments on commit 43d481f

Please sign in to comment.